Journal of the American Chemical Society
Article
After the reaction, the vessel was cooled to room temperature and
diluted with ether for GC analysis. The thioether oxidation products
(sulfoxide and sulfone) were identified with GC−MS and quantified
using gas chromatography with internal standard techniques.
Recyclability of the catalyst: the oxidation of methyl 4-
methoxyphenyl sulfide (entry 5 in Table 1) was selected as a probe
reaction. At first, 0.5 mmol of methyl 4-methoxyphenyl sulfide, 1.5
mmol of H2O2, and 0.5 × 10−2 mmol of Na10K22·1·85H2O were added
into 10 mL of MeCN. The mixture was stirred 1 h at 60 °C. Upon the
completion of the reaction, another 0.5 mmol of methyl 4-
methoxyphenyl sulfide and 1.5 mmol of H2O2 were added. After
that, the mixture was stirred 1 h at 60 °C again. The process was
repeatedly carried out.
Determination of Lattice Water Molecules. Lattice water
molecules are located in the interspaces of cluster polyanions. Na10K22·
1·85H2O is highly hydrated, and when it is exposed to the X-ray beam
for the collection of intensity data, the water molecules of
crystallization are easily lost from the structure. Therefore, some
water molecules of crystallization cannot be directly determined by X-
ray diffraction. A combination of elemental analysis and thermogravi-
metric analysis (Figure S11, Supporting Information) confirms the
number of water molecules of crystallization in Na10K22·1·85H2O,
which is not uncommon in giant poly(POM) species.16
1928. (i) Zheng, S.-T.; Zhang, J.; Li, X.-X.; Fang, W.-H.; Yang, G.-Y. J.
Am. Chem. Soc. 2010, 132, 15102.
(3) (a) Kikukawa, Y.; Yamaguchi, S.; Tsuchida, K.; Nakagawa, Y.;
Uehara, K.; Yamaguchi, K.; Mizuno, N. J. Am. Chem. Soc. 2008, 130,
5472. (b) Fang, X.-K.; Anderson, T. M.; Hill, C. L. Angew. Chem., Int.
Ed. 2005, 44, 3540. (c) Errington, R. J.; Petkar, S. S.; Middleton, P. S.;
McFarlane, W. J. Am. Chem. Soc. 2007, 129, 12181. (d) Finke, R. G.;
Rapko, B.; Weakley, T. J. R. Inorg. Chem. 1989, 28, 1573. (e) Bassil, B.
S.; Dickman, M. H.; Kortz, U. Inorg. Chem. 2006, 45, 2394. (f) Bassil,
B. S.; Mal, S. S.; Dickman, M. H.; Kortz, U.; Oelrich, H.; Walder, L. J.
Am. Chem. Soc. 2008, 130, 6696. (g) Al-Kadamany, G.; Mal, S. S.;
Milev, B.; Donoeva, B. G.; Maksimovs-kaya, R. I.; Kholdeeva, O. A.;
Kortz, U. Chem.Eur. J. 2010, 16, 11797.
(4) (a) Zheng, S.-T.; Yuan, D.-Q.; Jia, H.-P.; Zhang, J.; Yang, G.-Y.
Chem. Commun. 2007, 1858. (b) Zhao, J.-W.; Jia, H.-P.; Zhang, J.;
Zheng, S.-T.; Yang, G.-Y. Chem.Eur. J. 2007, 13, 10030. (c) Zhao, J.-
W.; Wang, C.-M.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Chem.Eur. J.
2008, 14, 9223. (d) Zheng, S.-T.; Zhang, J.; Yang, G.-Y. Angew. Chem.,
Int. Ed. 2008, 47, 3909. (e) Zheng, S.-T.; Clemente-Juan, J. M.; Yuan,
D.-Q.; Yang, G.-Y. Angew. Chem., Int. Ed. 2009, 48, 7176. (f) Li, B.;
Zhao, J.-W.; Zheng, S.-T.; Yang, G.-Y. Inorg. Chem. 2009, 48, 8294.
(5) Gall, R. D.; Faraj, M.; Hill, C. L. Inorg. Chem. 1994, 33, 5015.
(6) (a) Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.
(b) Brese, N. E.; O’Keeffe, M. Acta Crystallogr. 1991, B47, 192.
(c) Mitchell, S. G.; Molina, P. I.; Khanra, S.; Miras, H. N.; Prescimone,
A.; Cooper, G. J. T.; Winter, R. S.; Brechin, E. K.; Long, D.-L.;
Cogdell, R. J.; Cronin, L. Angew. Chem., Int. Ed. 2011, 50, 9154.
(7) Nsouli, N. H.; Iamail, A. H.; Helgadottir, I. S.; Dickman, M. H.;
Clemente-Juan, J. M.; Kortz, U. Inorg. Chem. 2009, 48, 5884.
(8) Zhang, Z.-M.; Qi, Y.-F.; Qin, C.; Li, Y.-G.; Wang, E.-B.; Wang, X.-
L.; Su, Z.-M.; Xu, L. Inorg. Chem. 2007, 46, 8162.
ASSOCIATED CONTENT
* Supporting Information
Synthesis, BVS, catalysis, detailed structure description, TG,
and IR. This material is available free of charge via the Internet
■
S
AUTHOR INFORMATION
Corresponding Author
■
(9) (a) Jørgensen, K. A. Chem. Rev. 1989, 89, 431. (b) Meunier, B.
Chem. Rev. 1992, 92, 1411.
(10) (a) Fernandez, I.; Khair, N. Chem. Rev. 2003, 103, 3651.
(b) Mikola-jaczyk, M.; Drabowicz, J.; Kielbasinski, P. Chiral Sulfur
Reagents: Applications in Symmetric and Stereoselective Synthesis; CRC:
Boca Raton, 1997. (c) Phan, T. D.; Kinch, M. A.; Barker, J. E.; Ren, T.
Tetrahedron Lett. 2005, 46, 397.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(11) (a) Gresley, N. M.; Griffith, W. P.; Laemmel, A. C.; Nogueira,
H. I. S.; Parkin, B. C. J. Mol. Catal. A Chem. 1997, 117, 185.
This work was supported by the NSFC (Grant Nos. 91122028,
21221001, 50872133, and 21101055), the NSFC for
Distinguished Young Scholars (Grant No. 20725101), and
973 Program (Grant Nos. 2014CB932101 and
2011CB932504).
(b) Carraro, M.; Nsouli, N.; Oelrich, H.; Sartorel, A.; Soraru, A.; Mal,
̀
S. S.; Scorrano, G.; Walder, L.; Kortz, U.; Bonchio, M. Chem.Eur. J.
2011, 17, 8371. (c) Kamata, K.; Hirano, T.; Kuzuya, S.; Mizuno, N. J.
́
Am. Chem. Soc. 2009, 131, 6997. (d) Bregeault, J.-M.; Vennat, M.;
Salles, L.; Piquemal, J.-Y.; Mahha, Y.; Briot, E.; Bakala, P. C.;
Atlamsani, A.; Thouvenot, R. J. Mol. Catal. A 2006, 250, 177.
(12) (a) Kholdeeva, O. A.; Maksimov, G. M.; Maksimovskaya, R. I.;
Kovaleva, L. A.; Fedotov, M. A.; Grigoriev, V. A.; Hill, C. L. Inorg.
Chem. 2000, 39, 3828. (b) Gall, R. D.; Hill, C. L.; Walker, J. E. Chem.
Mater. 1996, 8, 2523.
REFERENCES
■
(1) (a) Kozhevnikov, V. Catalysts for Fine Chemical Synthesis−
Catalysis by Polyoxometalates; John Wiley and Sons: Chichester, UK,
2002; p 117. (b) Topical issue on polyoxometalates, (Guest Ed.: Hill,
C. L.), Chem. Rev. 1998, 98, 1. (c) Polyoxometalate Chemistry: From
(13) (a) Kasai, J.; Nakagawa, Y.; Uchida, S.; Yamaguchi, K.; Mizuno,
Topology via Self-Assembly to Applications; Pope, M. T., Muller, A., Eds.:
̈
N. Chem.Eur. J. 2006, 12, 4176. (b) Alonso, D. A.; Naj
́
era, C.; Varea,
Kluwer: Dordrecht, The Netherlands, 2001. (d) Rosnes, M. H.;
Musumeci, C.; Pradeep, C. P.; Mathie-son, J. S.; Long, D.-L.; Song, Y.-
F.; Pignataro, B.; Cogdell, R.; Cronin, L. J. Am. Chem. Soc. 2010, 132,
15490. (e) Zheng, S.-T.; Yang, G.-Y. Chem. Soc. Rev. 2012, 41, 7623.
(f) Oms, O.; Dolbecq, A.; Mialane, P. Chem. Soc. Rev. 2012, 41, 7497.
(2) (a) Bassil, B. S.; Ibrahim, M.; Al-Oweini, R.; Asano, M.; Wang, Z.
X.; Tol, J. V.; Dalal, N. S.; Choi, K. Y.; Biboum, R. N.; Keita, B.; Nadjo,
L.; Kortz, U. Angew. Chem., Int. Ed. 2011, 50, 5961. (b) Godin, B.;
Chen, Y.; Vaissermann, J.; Ruhlmann, L.; Verdaguer, M.; Gouzerh, P.
Angew. Chem., Int. Ed. 2005, 44, 3072. (c) Lan, Y.; Bassil, B. S.; Xiang,
Y.; Suchopar, A.; Powell, A. K.; Kortz, U. Angew. Chem., Int. Ed. 2011,
50, 4708. (d) Mal, S. S.; Kortz, U. Angew. Chem., Int. Ed. 2005, 44,
3777. (e) Kim, G. S.; Zeng, H. D.; VanDerveer, D.; Hill, C. L. Angew.
Chem., Int. Ed. 1999, 38, 3205. (f) Sakai, Y.; Yoza, K.; Kato, C. N.;
M. Tetrahedron Lett. 2002, 43, 3459. (c) Imada, Y.; Kitagawa, T.;
Iwata, S.; Komiya, N.; Naota, T. Tetrahedron 2014, 70, 495.
(14) (a) Bi, L.-H.; Kortz, U.; Nellutla, S.; Stowe, A. C.; van Tol, J.;
Dalal, N. S.; Keita, B.; Nadjo, L. Inorg.Chem. 2005, 44, 896.
(b) Haraguchi, N.; Okaue, Y.; Isobe, T.; Matsuda, Y. Inorg. Chem.
1994, 33, 1015.
(15) Sheldrick, G. M. SHELXTL-97, Program for Crystal Structure
Solution; University of Gottingen: Germany, 1997.
̈
(16) Mialane, P.; Dolbecq, A.; Marrot, J.; Rivier
̀ ́
e, E.; Secheresse, F.
Angew. Chem., Int. Ed. 2003, 42, 3523.
Nomiya, K. Chem.Eur. J. 2003, 9, 4077. (g) Fang, X.; Kogerler, P.;
̈
Furukawa, Y.; Speldrich, M.; Luban, M. Angew. Chem., Int. Ed. 2011,
50, 5212. (h) Muller, A.; Diemann, E.; Kuhlmann, C.; Eimer, W.;
̈
Serain, C.; Tak, T.; Knochel, A.; Pranzas, P. K. Chem. Commun. 2001,
̈
7642
dx.doi.org/10.1021/ja413134w | J. Am. Chem. Soc. 2014, 136, 7637−7642