Communications
X. J. Wang, J. Org. Chem. 1992, 57, 1242 – 1252; c) M. E. Fox, C.
Li, J. P. Marino, Jr., L. E. Overman, J. Am. Chem. Soc. 1999, 121,
5467 – 5480; d) A. G. Myers, B. Zheng, J. Am. Chem. Soc. 1996,
118, 4492 – 4493; e) B. M. Trost, M. J. Krische, J. Am. Chem. Soc.
1999, 121, 6131 – 6141; f) W. R. Roush, R. J. Sciotti, J. Am. Chem.
Soc. 1994, 116, 6457 – 6458; g) E. J. Corey, K. A. Cimprich, J. Am.
Chem. Soc. 1994, 116, 3151 – 3152; h) N. K. Anand, E. M.
Carreira, J. Am. Chem. Soc. 2001, 123, 9687 – 9688; i) L. Pu,
Tetrahedron 2003, 59, 9873 – 9886.
Instead, this compound formed a centrosymmetric RRSS
À
tetrameric assembly, stabilized by a network of O H···O
À
À
hydrogen bonds in the solid state. No significant C H···F C
interactions were present in the crystal lattice of rac-3.
Additional stabilization of the tetramer came from the face-
to-face p–p stacking interactions involving the naphthyle-
thynyl and pentaflurophenyl units of the adjacent molecules.
We further synthesized the 9-anthrancenyl-substituted
[2] J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley,
Chichester, 2000.
À
compound rac-4, which contained no C H group ortho to the
triple bond. This compound was also
unable to form the hexameric struc-
ture of rac-1 and rac-2. Its crystal
structure was similar to that of rac-3
with the centrosymmetric RRSS te-
trameric assembly. Thus, the study of
rac-3 and rac-4 demonstrates that the
[3] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural
Chemistry and Biology, Oxford University Press, Oxford, 1999.
[4] a) N. N. L. Madhavi, C. Bilton, J. A. K. Howard, F. H. Allen, A.
Nangia, G. R. Desiraju, New J. Chem. 2000, 24, 1 – 4; b) C. Bilton,
J. A. K. Howard, N. N. L. Manhavi, A. Nangia, G. R. Desiraju,
F. H. Allen, C. C. Wilson, Acta Crystallogr. Sect. B 2000, 56, 1071 –
1079; c) J. G. Garcia, B. Ramos, A. Rodriguez, Acta Crystallogr.
Sect. C 1995, 51, 2674– 2676; d) D. Braga, F. Grepioni, D. Walther,
K. Heubach, A. Schmidt, W. Imhof, H. Gꢁrls, T. Klettke,
Organometallics 1997, 16, 4910 – 4919; e) F. H. Allen, J. A. K.
Howard, V. J. Hoy, G. R. Desiraju, D. S. Reddy, C. C. Wilson, J.
Am. Chem. Soc. 1996, 118, 4081 – 4084; f) N. N. L. Madhavi, G. R.
Desiraju, C. Bilton, J. A. K. Howard, F. H. Allen, Acta Crystal-
logr. Sect. C 2000, 56, 1359 – 1360; g) R. Banerjee, R. Mondal,
J. A. K. Howard, G. R. Desiraju, Cryst. Growth Des. 2006, 6, 999 –
1009.
À
À
C F···H C hydrogen bonds are very
important for the hexameric supramolecular structures of rac-
1 and rac-2.
We synthesized compound rac-5, which contained a
difluorophenyl group in place of the pentafluorophenyl unit
in rac-1 and rac-2, to assess the importance of the p–p
attraction of the aryl–perfluorophenyl
system. The subsequent structural
[5] a) C. R. Patrick, G. S. Prosser, Nature 1960, 187, 1021; b) A. P.
West, S. Mecozzi, D. A. Dougherty, J. Phys. Org. Chem. 1997, 10,
347 – 350; c) J. H. Williams, J. K. Cockcroft, A. N. Fitch, Angew.
Chem. 1992, 104, 1666 – 1669; Angew. Chem. Int. Ed. Engl. 1992,
31, 1655 – 1657; d) J. H. Williams, Acc. Chem. Res. 1993, 26, 593 –
598; e) T. Dahl, Acta Chem. Scand. 1994, 48, 95 – 106; f) R. E.
Gillard, J. F. Stoddart, A. J. P. White, B. J. Williams, D. J. Williams,
J. Org. Chem. 1996, 61, 4504 – 4505; g) F. Cozzi, F. Ponizi, R.
Annunziata, M. Cinquini, J. S. Siegel, Angew. Chem. 1995, 107,
1092 – 1094; Angew. Chem. Int. Ed. Engl. 1995, 34, 1019 – 1020;
h) G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B.
Lobkovsky, R. H. Grubbs, J. Am. Chem. Soc. 1998, 120, 3641 –
3649.
[6] A. Schwarzer, W. Seichter, E. Weber, H. Stoeckli-Evans, M.
Losada, J. Hulliger, CrystEngComm 2004, 6, 567 – 572.
[7] J. L. Flippen, J. Karle, I. L. Karle, J. Am. Chem. Soc. 1970, 92,
3749 – 3655.
[8] G. Gao, R.-G. Xie, L. Pu, Proc. Natl. Acad. Sci. USA 2004, 101,
5417 – 5420.
determination of rac-5 revealed a
linear assembly of the opposite enan-
À
tiomers held together by O H···O
hydrogen bonds rather than the hex-
À
americ structure of rac-1 and rac-2. Some weak C H···F
interactions were also found. However, no apparent stacking
forces were observed in this structure.
Our study of the various diaryl-substituted propargylic
alcohols demonstrates that the cooperation of three non-
covalent forces, O H···O hydrogen bonds, aryl–pentafluor-
À
À
obenzene p–p interactions, and C H···F hydrogen bonds, in
rac-1 and rac-2 is crucial for their supramolecular structures.
Decreasing any of the forces, as shown in the structures of rac-
3, rac-4, and rac-5, leads to a complete disruption of the
hexameric channel-like assembly. The supramolecular assem-
bly of rac-1 also exhibits promising host–guest interactions, as
evidenced by its complexation with molecules such as
À
dichloromethane and dioxane in the cages between the (O
H)6 planes. Further research is in progress to explore the
utility of these structures and functions. We are also preparing
the optically active analogues of these compounds by using a
catalytic asymmetric synthetic method to construct the
optically active supramolecular structures;[8] for example,
the combination of (R)-1 with (S)-2 could potentially
generate optically active crystals and chiral cages.
Received: April 23, 2006
Published online: July 17, 2006
Keywords: p–p interactions · fluorine · hydrogen bond ·
.
propargylic alcohols · supramolecular chemistry
[1] Selected examples: a) Modern Acetylene Chemistry (Eds.: P. J.
Stang, F. Diederich), VCH, Weinheim, 1995; b) J. A. Marshall,
5360
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 5358 –5360