Organic Letters
Letter
Iridium-Catalyzed Dehydrogenative Silylation of Azulenes Based on
the Regioselective C−H Bonds Activation. Org. Lett. 2015, 17, 1798−
1801. (c) Murai, M.; Takeshima, H.; Morita, H.; Kuninobu, Y.; Takai,
K. Acceleration Effects of Phosphine Ligands on the Rhodium-
Catalyzed Dehydrogenative Silylation and Germylation of Unac-
tivated C(sp3)−H Bonds. J. Org. Chem. 2015, 80, 5407−5414.
(d) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Rhodium-
Catalyzed Synthesis of Benzosilolometallocenes via the Dehydrogen-
ative Silylation of C(sp2)−H Bonds. Org. Lett. 2015, 17, 3102−3105.
(e) Murai, M.; Takeuchi, Y.; Yamauchi, K.; Kuninobu, Y.; Takai, K.
Rhodium-Catalyzed Synthesis of Chiral Spiro-9-silabifluorenes via
Dehydrogenative Silylation: Mechanistic Insights into the Con-
struction of Tetraorganosilicon Stereocenters. Chem. - Eur. J. 2016,
22, 6048−6058. (f) Murai, M.; Okada, R.; Nishiyama, A.; Takai, K.
Synthesis and Properties of Sila[n]helicenes via Dehydrogenative
Silylation of C−H Bonds under Rhodium Catalysis. Org. Lett. 2016,
18, 4380−4383. (g) Murai, M.; Takeuchi, Y.; Takai, K. Iridium-
Catalyzed Dehydrogenative Dimerization of Benzylmethylsilanes via
Silylation of C(sp3)−H Bonds Adjacent to a Silicon Atom. Chem. Lett.
2017, 46, 1044−1047. (h) Murai, M.; Okada, R.; Asako, S.; Takai, K.
Rhodium-Catalyzed Silylative and Germylative Cyclization with
Dehydrogenation Leading to 9-Sila- and 9-Germafluorenes: A
Combined Experimental and Computational Mechanistic Study.
Chem. - Eur. J. 2017, 23, 10861−10870.
(7) For reviews of dehydrogenative silylation of C−H bonds, see:
(a) Cheng, C.; Hartwig, J. F. Catalytic Silylation of Unactivated C−H
Bonds. Chem. Rev. 2015, 115, 8946−8975. (b) Sharma, R.; Kumar, R.;
Kumar, I.; Singh, B.; Sharma, U. Selective C−Si Bond Formation
through C−H Functionalization. Synthesis 2015, 47, 2347−2366.
(c) Xu, Z.; Huang, W.-S.; Zhang, J.; Xu, L.-W. Recent Advances in
Transition-Metal-Catalyzed Silylations of Arenes with Hydrosilanes:
C−X Bond Cleavage or C−H Bond Activation Synchronized with
Si−H Bond Activation. Synthesis 2015, 47, 3645−3668.
(8) (a) Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.;
Hayamizu, T.; Chatani, N.; Murai, S. The Ruthenium-catalyzed
Silylation of Aromatic C−H Bonds with Triethylsilane. J. Organomet.
Chem. 2003, 686, 134−144. (b) Sakurai, T.; Matsuoka, Y.; Hanataka,
T.; Fukuyama, N.; Namikoshi, T.; Watanabe, S.; Murata, M.
Ruthenium-catalyzed Ortho-selective Aromatic C−H Silylation:
Acceptorless Dehydrogenative Coupling of Hydrosilanes. Chem.
Lett. 2012, 41, 374−376. (c) Wang, H.; Wang, G.; Li, P. Iridium-
catalyzed intermolecular directed dehydrogenative ortho C−H
silylation. Org. Chem. Front. 2017, 4, 1943−1946.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
S
Experimental procedures, spectroscopic data for all new
compounds, and copies of H and 13C NMR spectra
1
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by a Grant-in-Aid for
Scientific Research (B; 18H03911 to M.M.) from MEXT,
Japan.
REFERENCES
■
(1) (a) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. A Simple Recipe for
Sophisticated Cocktails: Organocatalytic One-Pot Reactions-Concept,
Nomenclature, and Future Perspectives. Angew. Chem., Int. Ed. 2011,
50, 8492−8509. (b) Marson, C. M. Multicomponent and sequential
organocatalytic reactions: diversity with atom-economy and enantio-
control. Chem. Soc. Rev. 2012, 41, 7712−7722. (c) Zeng, X. Recent
advances in catalytic sequential reactions involving hydroelement
addition to carbon−carbon multiple bonds. Chem. Rev. 2013, 113,
6864−6900. (d) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Catalytic
C−C Bond-Forming Multi-Component Cascade or Domino Re-
actions: Pushing the Boundaries of Complexity in Asymmetric
Organocatalysis. Chem. Rev. 2014, 114, 2390−2431. (e) Tietze, L.
F., Ed. Domino Reactions; Wiley-VCH: Weinheim, Germany, 2014.
(f) Rodriguez, J., Bonne, D., Eds. Stereoselective Multiple Bond-Forming
Transformations in Organic Synthesis; Wiley: Hoboken, NJ, 2015.
(g) Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 2016,
7, 866−880.
(9) Dehydrogenative silylation with HSiMe(OSiMe3)2, HSi(OEt)3,
and HSiMe2Ph provided the corresponding silylated products in
<30% yield. Silylation of aromatic aldimines having electron-
withdrawing substituents with Et3SiH did not proceed efficiently.
(10) Yields of the silylation steps for the syntheses of 3b−3e and 3h
were 88%, 87%, 80%, 80%, and 79%, respectively.
(2) For a review, see: Murai, M.; Takai, K. Unsymmetrical
Difunctionalization of Two Different C−H Bonds in One Pot
Under Transition-Metal Catalysis. Synthesis 2019, 51, 40−54.
(3) (a) Ghosh, K.; Rit, R. K.; Ramesh, E.; Sahoo, A. K. Ruthenium-
Catalyzed Hydroarylation and One-Pot Twofold Unsymmetrical C−
H Functionalization of Arenes. Angew. Chem., Int. Ed. 2016, 55,
7821−7825. (b) Ghosh, K.; Shankar, M.; Rit, R. K.; Dubey, G.;
Bharatam, P. V.; Sahoo, A. K. Sulfoximine-Assisted One-Pot
Unsymmetrical Multiple Annulation of Arenes: A Combined
Experimental and Computational Study. J. Org. Chem. 2018, 83,
9667−9681.
(11) (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J.
M.; Hartwig, J. F. C−H Activation for the Construction of C−B
́
Bonds. Chem. Rev. 2010, 110, 890−931. (b) Ros, A.; Fernandez, R.;
Lassaletta, J. M. Functional Group Directed C−H Borylation. Chem.
Soc. Rev. 2014, 43, 3229−3243.
(12) Pierre, C.; Baudoin, O. Synthesis of Polycyclic Molecules by
Double C(sp2)−H/C(sp3)−H Arylations with a Single Palladium
Catalyst. Org. Lett. 2011, 13, 1816−1819.
(13) (a) Thompson, A. L. S.; Kabalka, G. W.; Akula, M. R.;
Huffman, J. W. The Conversion of Phenols to the Corresponding Aryl
Halides Under Mild Conditions. Synthesis 2005, 2005, 547−550.
(b) Murphy, J. M.; Liao, X.; Hartwig, J. F. Meta Halogenation of 1,3-
Disubstituted Arenes via Iridium-Catalyzed Arene Borylation. J. Am.
Chem. Soc. 2007, 129, 15434−15435.
(4) Korvorapun, K.; Kaplaneris, N.; Rogge, T.; Warratz, S.; Stuckl, A.
̈
C.; Ackermann, L. Sequential meta-/ortho-C−H Functionalizations by
One-Pot Ruthenium(II/III) Catalysis. ACS Catal. 2018, 8, 886−892.
(5) Murai, M.; Nishinaka, N.; Takai, K. Iridium-Catalyzed
Sequential Silylation and Borylation of Heteroarenes Based on
Regioselective C−H Bond Activation. Angew. Chem., Int. Ed. 2018,
57, 5843−5847.
(14) Koyanagi, M.; Eichenauer, N.; Ihara, H.; Yamamoto, T.;
Suginome, M. Anthranilamide-masked o-Iodoarylboronic Acids as
Coupling Modules for Iterative Synthesis of ortho-Linked Oligoarenes.
Chem. Lett. 2013, 42, 541−543.
(15) 5d could be also obtained by quenching of 3a′ with LiAlH4
instead of aqueous HCl.
(6) For our contribution on the direct dehydrogenative silylation of
C−H bonds, see: (a) Murai, M.; Takami, K.; Takai, K. Iridium-
Catalyzed Intermolecular Dehydrogenative Silylation of Polycyclic
Aromatic Compounds without Directing Group. Chem. - Eur. J. 2015,
21, 4566−4570. (b) Murai, M.; Takami, K.; Takeshima, H.; Takai, K.
E
Org. Lett. XXXX, XXX, XXX−XXX