ketones and esters to include more challenging R,β-unsa-
turated amides.10 Catalytic asymmetric variants as well as
metal-free conditions have also been developed.7a,11
Although other transition metals (Pt,12 Pd,13 Rh,14 Ni,15
and Zn16) were effective as catalysts, CuI-catalyzed reports
dominate the literature in part because copper is an
inexpensivemetaland itsreactivitycan be tunedbyaltering
the ligands. Bis(pinacolato)diboron (B2pin2) is widely used
asthe boron source ina majorityofreports; however, other
reagents such as pinacolatodiisopropanolaminatodiboron17
and tetrahydroxydiborane18 can be used as alternatives.
Despite the great number of reports detailing the in-
stallation of boron on the β-carbon of an R,β-unsaturated
carbonyl, most reaction conditions have disadvantages:
some are uneconomical (employing expensive ligands and
a high catalyst loading), others are harsh (strong base such
as tert-butoxide is required), and more importantly, the
reactions are air-sensitive, often requiring the use of a
glovebox or Schlenck techniques. Thus, there is a need
for a more efficient and convenient method for the synth-
esis of alkylboronic acids. Herein we report an amine base
promoted β-borylation protocol of R,β-unsaturated car-
bonyls in water and open to air. In addition, we demonstrate
the first CuII-catalyzed β-borylation reaction and provide
mechanistic insight to the efficient borylation reaction.
Previous work in our laboratory17established that com-
plexation of B2pin2 by a Lewis base is necessary for the
in situ formation of an activated diboron.19 Hence, we began
our investigation by screening suitable additives that can
affect the borylation reaction in water without any organic
cosolvent.20 Preliminary studies indicated that amine bases
are inefficient in catalyzing the β-borylation reaction in
organic solvents in the presence of copper. Surprisingly, we
found that addition of a catalytic amount of inexpensive,
commercially available amines allowed the efficient con-
version of 2-cyclohexenone 1 to the corresponding bora-
tohomoenolate 2 in the presence of CuCl2 in water (Table 1).
Table 1. Screening of Additives and Reaction Conditionsa
entry
base additive
conv %b
1
benzylamine
piperidine
triethylamine
TMEDA
98.2
96.6
95.0
98.2
95.6
98.1
>99.9
98.4
97.5
99.8
97.8
76.9
17.7
99.8
20.3
42.9 (0d)
86.0
86.0
2
3
4
5
DBU
6
pyridine
7
4-picoline
8
3-picoline
9
2,6-lutidine
DMAPc
10
11
12
13
14
15
16
17
18
imidazole
quinoline
2,20-bipyridinec
proton sponge
none
4-picoline
sodium acetate
sodium hydroxide
a Reaction conditions: B2pin2 (1.1 equiv), 2-cyclohexen-1-one (1.0
equiv), and amine (2 mol %) were added to a 1-dram, PTFE vial with a
magnetic stir bar. 1.5 mL of a stock CuCl2 (1.72 mM) solution in water
was added and stirred vigorously for 1 h at rt. b Conversions determined
by GC analysis. c Amine was dissolved in THF before addition. d In the
absence of CuCl2 using nuclease-free or Milli-Q water.
(10) Mun, S.; Lee, J. E.; Yun, J. Org. Lett. 2006, 8, 4887–4889.
(11) (a) Lee, J. E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145–147.
(b) Lillo, V.; Prieto, A.; Bonet, A.; Dıaz-Requejo, M. M.; Ramırez, J.;
´ ´
In marked contrast to CuI-catalyzed β-borylation in
organic solvents,9b,10,11,11f,17a,17c,18,21 the current protocol
is most efficient with a CuII source (vide infra).22 CuII salts
are especially convenient because of their high solubility in
water and resistance to oxidation upon exposure to air.
Gratifyingly, we found that a variety of primary, second-
ary, and tertiary aliphatic amines provided excellent con-
version to 2 (entries 1ꢀ4). Use of a strong base was also
effective (entry 5). Heteroaromatic amines performed
better on average than aliphatic amines, with 4-picoline
giving the highest conversion (entries 6ꢀ11). Quinoline
showed decreased activity, likely due to decreased solubi-
lity in water (entry 12). On the other hand, 2,20-bipyridine
gavea significantly lower conversion, possibly asa resultof
ꢀ
ꢀ
Perez, P. J.; Fernandez, E. Organometallics 2008, 28, 659–662. (c) Chen,
I. H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2009, 131, 11664–11665. (d) Lillo, V.; Bonet, A.; Fernandez, E. Dalton
Trans. 2009, 2899–2908. (e) Lee, K. S.; Zhugralin, A. R.; Hoveyda, A. H.
J. Am. Chem. Soc. 2009, 131, 7253–5. (f) Bonet, A.; Gulyas, H.;
Fernandez, E. Angew. Chem., Int. Ed. 2010, 49, 5130–4.
(12) (a) Lawson, Y. G.; Lesley, M. J. G.; Norman, N. C.; Rice, C. R.;
Marder, T. B. Chem. Commun. 1997, 2051–2052. (b) Abu Ali, H.;
Goldberg, I.; Srebnik, M. Organometallics 2001, 20, 3962–3965. (c) Bell,
N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin,
M. A.; Elsevier, C. J.; Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P.
Chem. Commun. 2004, 1854–1855.
ꢀ
ꢀ
(13) Bonet, A.; Gulyas, H.; Koshevoy, I. O.; Estevan, F.; Sanau, M.;
ꢀ
ꢀ
Ubeda, M. A.; Fernandez, E. Chem.;Eur. J. 2010, 16, 6382–6390.
(14) (a) Kabalka, G. W.; Das, B. C.; Das, S. Tetrahedron Lett. 2002,
43, 2323–2325. (b) Shiomi, T.; Adachi, T.; Toribatake, K.; Zhou, L.;
Nishiyama, H. Chem. Commun. 2009, 5987–5989.
(15) Hirano, K.;Yorimitsu, H.;Oshima, K. Org. Lett. 2007, 9, 5031–5033.
(16) Kajiwara, T.; Terabayashi, T.; Yamashita, M.; Nozaki, K.
Angew. Chem., Int. Ed. 2008, 47, 6606–6610.
(17) (a) Gao, M.; Thorpe, S. B.; Santos, W. L. Org. Lett. 2009, 11,
3478–3481. (b) Thorpe, S. B.; Guo, X.; Santos, W. L. Chem. Commun.
2011, 47, 424–426. (c) Gao, M.; Thorpe, S. B.; Kleeberg, C.; Slebodnick,
C.; Marder, T. B.; Santos, W. L. J. Org. Chem. 2011, 76, 3997–4007.
(18) Molander, G. A.; McKee, S. A. Org. Lett. 2011, 13, 4684–4687.
(21) (a) Chea, H.; Sim, H. S.; Yun, J. Adv. Synth. Catal. 2009, 351, 855–
858. (b) Sim, H.-S.; Feng, X.; Yun, J. Chem.;Eur. J. 2009, 15, 1939–1943.
(c) Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982–983.
(d) Fleming, W. J.; Muller-Bunz, H.; Lillo, V.; Fernandez, E.; Guiry, P. J.
Org. Biomol. Chem. 2009, 7, 2520–4. (e) Chen, I. H.; Kanai, M.; Shibasaki,
M. Org. Lett. 2010, 12, 4098–4101. (f) Feng, X.; Yun, J. Chem. Commun.
2009, 6577–6579. (g) Park, J. K.; Lackey, H. H.; Rexford, M. D.; Kovnir,
K.; Shatruk, M.; McQuade, D. T. Org. Lett. 2010, 12, 5008–5011.
(22) During the submission of this manuscript, Cu(OTf)2 was re-
ꢀ
ꢀ
(19) Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyas, H.; Fernandez,
E. Chem.;Eur. J. 2012, 18, 1121–1126.
ꢀ
ported as a catalyst: Ibrahem, I.; Breistein, P.; Cordova, A. Angew.
Chem., Int. Ed. 2011, 50, 12036–12041.
(20) Chea, H.; Sim, H. S.; Yun, J. Bull. Korean Chem. Soc. 2010, 31,
551–552.
Org. Lett., Vol. 14, No. 7, 2012
1919