ACS Medicinal Chemistry Letters
LETTER
(50 mg/kg) or vehicle solution twice a day for 28 days. The in vivo
experimental results showed that inhibition of BMK1 by 18 signifi-
cantly suppressed tumor growth by 95%, demonstrating the efficacy
and tolerability of BMK1-targeted cancer treatment in animals (for a
more comprehensive in vivo efficacy study, please see ref 22).
In conclusion, 11, 18, and 21 represent a new chemotype
exhibiting potent and highly selective BMK1 activities. They were
discovered using kinome-wide profiling followed by cellular BMK1-
guided SAR study. Given their excellent kinase selectivity, favorable
pharmacokinetic parameters, and efficacy in xenograft tumor mod-
els, the 2-amino-5,11-disubstituted-5H-benzo[e]pyrimido [5,4-b]-
[1,4]diazepin-6(11H)-ones may represent a privileged scaffold for
the development of therapeutic agents targeting BMK1.
’ REFERENCES
(1) Widmann, C.; Gibson, S.; Jarpe, M. B.; Johnson, G. L. Mitogen-
activated protein kinase: conservation of a three-kinase module from
yeast to human. Physiol. Rev. 1999, 79, 143–80.
(2) Chang, L.; Karin, M. Mammalian MAP kinase signalling cas-
cades. Nature 2001, 410, 37–40.
(3) Lee, J. D.; Ulevitch, R. J.; Han, J. Primary structure of BMK1: a
new mammalian map kinase. Biochem. Biophys. Res. Commun. 1995, 213,
715–724.
(4) Zhou, G.; Bao, Z. Q.; Dixon, J. E. Components of a new human
protein kinase signal transduction pathway. J. Biol. Chem. 1995, 270,
12665–12669.
(5) English, J. M.; Vanderbilt, C. A.; Xu, S.; Marcus, S.; Cobb, M. H.
Isolation of MEK5 and differential expression of alternatively spliced
forms. J. Biol. Chem. 1995, 270, 28897–28902.
’ ABBREVIATIONS
(6) Hayashi, M.; Lee, J. D. Role of the BMK1/ERK5 signaling
pathway: lessons from knockout mice. J. Mol. Med. 2004, 82, 800–808.
(7) Wang, X.; Tournier, C. Regulation of cellular functions by the
ERK5 signalling pathway. Cell. Signalling 2006, 18, 753–60.
(8) Mehta, P. B.; Jenkins, B. L.; McCarthy, L.; Thilak, L.; Robson,
C. N.; Neal, D. E.; Leung, H. Y. MEK5 overexpression is associated with
metastatic prostate cancer, and stimulates proliferation, MMP-9 expres-
sion and invasion. Oncogene 2003, 22, 1381–9.
(9) Esparis-Ogando, A.; Diaz-Rodriguez, E.; Montero, J. C.; Yuste,
L.; Crespo, P.; Pandiella, A. Erk5 participates in neuregulin signal
transduction and is constitutively active in breast cancer cells over-
expressing ErbB2. Mol. Cell. Biol. 2002, 22, 270–85.
BMK1, big MAP kinase 1; DIEA, N,N-diisopropylethylamine;
DMA, N,N-dimethylacetamide; EGF, epidermal growth factor;
ERK1/2, extracelluar-signal-regulated kinase 1/2; ERK5, extra-
celluar-signal-regulated kinase 5; ErbB-2/HER2, human epider-
mal growth factor receptor 2; JNK, c-Jun-amino-terminal kinase;
MAPK, mitogen-activated protein kinase; MEK5, MAP kinase
kinase 5; Pd2(dba)3, tris(dibenzylideneacetone)dipalladium-(0);
PLK, polo-like kinase; RSK, ribosomal S6 kinase; SAR, structure-
activityrelationship;X-phos, 2-dicyclohexylphosphino-20,40,60-trii-
sopropylbiphenyl.
(10) Weldon, C. B.; Scandurro, A. B.; Rolfe, K. W.; Clayton, J. L.;
Elliott, S.; Butler, N. N.; Melnik, L. I.; Alam, J.; McLachlan, J. A.; Jaffe,
B. M.; Beckman, B. S.; Burow, M. E. Identification of mitogen-activated
protein kinase kinase as a chemoresistant pathway in MCF-7 cells by
using gene expression microarray. Surgery 2002, 132, 293–301.
(11) Tatake, R. J.; O’Neill, M. M.; Kennedy, C. A.; Wayne, A. L.;
Jakes, S.; Wu, D.; Kugler, S. Z., Jr.; Kashem, M. A.; Kaplita, P.; Snow, R. J.
Identification of pharmacological inhibitors of the MEK5/ERK5 path-
way. Biochem. Biophys. Res. Commun. 2008, 377, 120–125.
(12) Zhang, J.; Yang, P. L.; Gray, N. S. Targeting cancer with small
molecule kinase inhibitors. Nat. Rev. Cancer 2009, 9, 28–39.
(13) Lenart, P.; Petronczki, M.; Steegmaier, M.; Di Fiore, B.; Lipp,
J. J.; Hoffmann, M.; Rettig, W. J.; Kraut, N.; Peters, J. M. The small-
molecule inhibitor BI 2536 reveals novel insights into mitotic roles of
polo-like kinase 1. Curr. Biol. 2007, 17, 304–315.
(14) Steegmaier, M.; Hoffmann, M.; Baum, A.; Lenart, P.; Petronczki,
M.; Krssak, M.; Gurtler, U.; Garin-Chesa, P.; Lieb, S.; Quant, J.; Grauert, M.;
Adolf, G. R.; Kraut, N.; Peters, J. M.; Rettig, W. J. BI 2536, a potent and
selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr.
Biol. 2007, 17, 316–322.
(15) Sapkota, G. P.; Cummings, L.; Newell, F. S.; Armstrong, C.; Bain,
J.; Frodin, M.; Grauert, M.; Hoffmann, M.; Schnapp, G.; Steegmaier, M.;
Cohen, P.; Alessi, D. R. BI-D1870 is a specific inhibitor of the p90 RSK
(ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem. J. 2007, 401,
29–38.
(16) Fabian, M. A.; Biggs, W. H., 3rd; Treiber, D. K.; Atteridge, C. E.;
Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen,
P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.;
Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias, J. M.; Mehta,
S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.;
Zarrinkar, P. P.; Lockhart, D. J. A small molecule-kinase interaction map
for clinical kinase inhibitors. Nat. Biotechnol. 2005, 23, 329–336.
(17) Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.;
Atteridge, C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.;
Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov,
Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.; Wodicka,
L. M.; Zarrinkar, P. P. A quantitative analysis of kinase inhibitor
selectivity. Nat. Biotechnol. 2008, 26, 127–132.
’ ASSOCIATED CONTENT
S
Supporting Information. Procedures and characteriza-
b
tion data for all compounds; procedures for biochemical assays
and cellular assay, ambit profiling data for 4, 5, 10, 11, 18, and BI-
2536, and cancer cell line profiling data for 11. This material is
’ AUTHOR INFORMATION
Corresponding Author
*(N.S.G.) Telephone: 617-582-8590. Fax: 617-582-8615. E-mail:
Nathanael_Gray@dfci.harvard.edu. (J.D.L.) Telephone: 858-784-
8703. Fax: 858-784-8343. E-mail: jdlee@scripps.edu.
Author Contributions
These authors contributed equally. N.S.G., X.D. and T.S.
designed the chemistry scaffold. X.D. and N.K. performed the
chemical synthesis and characterization. Q.Y., J.-D.L. and N.S.G.
designed the biological experimental research. Q.Y. performed
the biological experiment and analysis. U.M. and J.E.S. per-
formed the cancer cell lines profiling and analyzed the data.
X.D. and N.S.G co-wrote the paper. All authors read and edited
the manuscript.
Funding Sources
This work was supported by NIH Grant P41 GM079575-03
(N.S.G.), NIH Grants CA079871 and CA114059 (J.-D.L.),
funds from the Tobacco-Related Disease, Research Program of
the University of California, 19XT-0084 (J.-D.L.), and the Sanger
Research Centre (U.M.).
’ ACKNOWLEDGMENT
We wish to thank Life Technologies Corporation, SelectScreen
Kinase Profiling Service for performing enzymatic biochemical kinase
profiling, Ambit Bioscience for performing KINOMEscan profiling,
and SAI Advantium for performing pharmacokinetic studies.
(18) Ambit KINOMEscan selectivity score (S) is a quantitative
measure of compound selectivity. The selectivity score for primary
199
dx.doi.org/10.1021/ml100304b |ACS Med. Chem. Lett. 2011, 2, 195–200