Paper
RSC Advances
of acetate ion, gives a slightly less sensitive response towards 11 Y.-H. Kim, Y. K. Han and J. Kang, Bull. Korean Chem. Soc.,
the changes in water content in acetonitrile. Above observation 2011, 32, 4244–4246.
indicates that the present water signaling system is based upon 12 D. Citterio, T. Kawada, J. Yagi, T. Ishigaki, H. Hisamoto,
the effect of water on the formation of deprotonated DBH. The S. I. Sasaki and K. Suzuki, Anal. Chim. Acta, 2003, 482, 19–28.
higher amount of acetate ions may compete with water in 13 H. Lu and S. C. Rutan, Anal. Chem., 1996, 68, 1381–1386.
formation of deprotonated DBH.
14 W. Liu, Y. Wang, W. Jin, G. Shen and R. Yu, Anal. Chim. Acta,
1999, 383, 299–307.
15 C. G. Niu, A. L. Guan, G. M. Zeng, Y. G. Liu and Z. W. Li, Anal.
Chim. Acta, 2006, 577, 264–270.
4. Conclusion
In this paper, the solvatochromism in solution of a simple, cost 16 S. Ercelen, A. S. Klymchenko and A. P. Demchenko, Anal.
effective Schiff base (E)-4-[{2-(2,4-dinitrophenyl)hydrazono} Chim. Acta, 2002, 464, 273–287.
benzene-1,3-diol] (DBH) and water sensing behavior of depro- 17 C. G. Niu, P. Z. Qin, G. M. Zeng, X. Q. Gui and A. L. Guan,
tonated DBH in acetonitrile have been described. The anions Anal. Bioanal. Chem., 2007, 387, 1067–1074.
(acetate ions and uoride) and DMSO are found to promote 18 K. N. Kim, K. C. Song, J. H. Noh and S. K. Chang, Bull. Korean
deprotonation of DBH. On addition of acetate ions in acetoni- Chem. Soc., 2009, 30, 197–200.
trile solution of DBH, the color changes from yellow to dark red 19 Y. H. Kim, M. G. Choi, H. G. Im, S. Ahn, I. W. Shim and
due the formation of deprotonated DBH. The interference of S. K. Chang, Dyes Pigm., 2012, 92, 1199–1203.
water in the formation of deprotonated DBH is utilized for water 20 T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger and
sensing in acetonitrile. The deprotonated DBH exhibits a F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 3094–3117.
pronounced chromogenic signaling behavior that can be 21 S. J. Brooks, P. A. Gale and M. E. Light, Chem. Commun.,
detected by naked eye in response to the changes in water 2006, 4344–4346.
content in acetonitrile. The changes in UV-visible absorption 22 S. Hu, Y. Guo, J. Xu and S. Shao, Org. Biomol. Chem., 2008, 6,
spectra are successfully analyzed by ratiometry as well as by 2071–2075.
shis in the absorption maximum and signals well for less than 23 S. Goswami, A. K. Das and S. Maity, Dalton Trans., 2013, 42,
2% water in acetonitrile. The limit of detection (0.012%) for 16259–16263.
water content in acetonitrile is much higher than the reported 24 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
elsewhere. The anion receptor, DBH can be useful as a conve- 1990, 46, 467–473.
nient colorimetric and ratiometric probe for analyzing the water 25 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
content in acetonitrile.
Renement, University of Gottingen, Germany, 1997.
26 I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler,
C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta
Crystallogr., Sect. A: Found. Crystallogr., 2002, 58, 389–397.
Acknowledgements
The authors thank the Head, S.A.I.F., Indian Institute of Tech- 27 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
nology, Kanpur, India for recording the ESI-mass spectra. Two 28 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
of the authors (K.T. and M.M.) are also thankful to CSIR, New
Delhi for awarding Senior Research Fellowship.
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,
S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03,
Revision D.02, Gaussian Inc., Wallingford, CT, 2004.
References
1 C. Reichardt, Pure Appl. Chem., 2004, 76, 1903–1919.
2 A. Bagno, J. Phys. Org. Chem., 2002, 15, 790–795.
3 C. Reichardt, Chem. Rev., 1994, 94, 2319–2358.
4 G. Suganthi, S. Sivakolunth and V. Ramakrishnan, J.
Fluoresc., 2010, 20, 1181–1189.
5 I. Bolz, C. May and S. Spange, New J. Chem., 2007, 31, 1568–
1571.
6 L. G. Nandi, F. Facin, V. G. Marini, L. M. Zimmermann,
L. A. Giusti, R. da Silva, G. F. Caramori and V. G. Machado,
J. Org. Chem., 2012, 77, 10668–10679.
7 R. A. Timm, M. P. H. Falla, M. F. G. Huila, H. E. M. Peres,
F. J. Ramirez-Fernandez, K. Araki and H. E. Toma, Sens.
Actuators, B, 2010, 146, 61–68.
8 W. K. O'Keefe, F. T. T. Ng and G. L. Rempel, J. Chromatogr. A,
2008, 1182, 113.
9 K. Fischer, Angew. Chem., 1935, 48, 394.
10 V. Kestens, P. Conneely and A. Bernreuther, Food Chem.,
2008, 106, 1454–1459.
29 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996,
256, 454–464.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 27556–27564 | 27563