J.-M. Lehn et al.
(m, 12H), 2.08–2.14 (m, 4H), 3.99 (s, 2H), 7.32–7.38 (m, 2H), 7.44 (t,
3J=7.2 Hz, 1H), 7.52 (s, 1H), 7.59 (d, 3J=7.5 Hz, 1H), 7.81–7.90 (m,
3H), 7.92–7.98 (m, 4H), 8.02 (br, 1H), 8.68 (s, 1H), 10.12, 10.13 ppm (2s,
1H); 13C NMR (CDCl3): d=13.90, 13.95, 14.00, 22.45, 22.55, 22.60, 23.75,
23.80, 29.50, 29.60, 29.65, 31.40, 31.45, 31.55, 36.95, 40.05, 40.20, 55.50,
117.65, 119.75, 120.20, 120.40, 120.55, 120.65, 121.20, 121.30, 122.65,
122.75, 123.20, 123.35, 125.00, 126.55, 126.85, 128.90, 130.30, 130.45,
135.85, 136.45, 136.80, 140.05, 141.35, 142.65, 143.35, 144.50, 145.60,
146.60, 150.90, 152.25, 152.35, 152.80, 152.85, 159.65, 160.00, 192.20,
192.30 ppm; MS (electrospray): m/z (%): 554.4 (100) [M+H]+; HRMS:
calcd: 554.3417; found: 554.3392.
[3] a) J.-M. Lehn, Chem. Eur. J. 1999, 5, 2455; b) A.V. Eliseev, J.-M.
Lehn, Combin. Chem. Biol. 1999, 243, 159; c) O. Ramstrçm, J.-M.
Lehn, Nat. Rev. Drug Discovery 2002, 1, 26.
[4] a) R. L. Cousins, S. A. Poulsen, J. K. M. Sanders, Curr. Opin. Chem.
Biol. 2000, 4, 270; b) R. S. Otto, R. L. E. Furlan, J.K. M. Sanders,
Curr. Opin. Chem. Biol. 2002, 6, 321; c) B. Klekota, B. L. Miller,
TIBTECH 1999, 17, 205; d) V. Wittmann, Nachr. Chem. 2002, 50,
724.
[5] For dynamic materials, see: a) J.-M. Lehn in Supramolecular Sci-
ence: Where It Is and Where It Is Going (Eds.: R. Ungaro, E. Dalca-
nale), Kluwer, Dordrecht (The Netherlands), 1999, p. 287; b) Polya-
cylhydrazones: W. G. Skene, J.-M. Lehn, Proc. Natl. Acad. Sci. USA
2004, 101, 8270.
Oligomer (4): The product was synthesized by using the general method
and obtained as
a bright yellow powder (yield 79%); M.p. 2268C
(decomp); 1H NMR (250 MHz, pyridine): d=0.72 (br, 14H), 1.02 (br,
30H), 2.24 (br, 8H), 7.45–7.60 (br, 8H), 8.10–8.20 (br, 12H), 8.50 (br,
6H), 8.86 ppm (br, 4H); MS (MALDI-TOF) (n=1): m/z (%): 1003.6
(100) [M+H]+ (polymeric structures are observed up to n=10); HRMS
(electrospray) (n=1): calcd: 1003.6612; found: 1003.6668; UV/Vis
(CHCl3, 5.4210À6 molLÀ1): l=408 nm; fluorescence: lmax =483 nm.
[6] a) Supramolecular Polymers, 2nd ed. (Ed.: A. Ciferri), Taylor Fran-
cis, New York, 2004; b) J.-M. Lehn in Supramolecular Polymers, 2nd
ed. (Ed.: A. Ciferri), Taylor Francis, New York, 2004, Chapter 1,
p. 3; c) J.-M. Lehn, Polym. Int. 2002, 51, 825.
[7] B. Hasenknopf, J.-M. Lehn, B. O. Kneisel, G. Baum, D. Fenske,
Angew. Chem. 1996, 108, 1987; Angew. Chem. Int. Ed. Engl. 1996,
35, 1838.
[8] a) J. Nitschke, J.-M. Lehn, Proc. Natl. Acad. Sci. USA 2003, 100,
11970; b) N. Giuseppone, J.-L. Schmitt, J.-M. Lehn, Angew. Chem.
2004, 116, 5010; Angew. Chem. Int. Ed. 2004, 43, 4902; c) O. Storm,
U. Lüning, Chem. Eur. J. 2002, 8, 793; d) K. Severin, Chem. Eur. J.
2004, 10, 2565; e) D. Schultz, J. R. Nitschke, Proc. Natl. Acad. Sci.
USA 2005, 102, 11191.
Oligomer (5): The product was synthesized by using the general method
and obtained as a bright yellow powder (yield 76%); M.p. (decomposi-
tion) 3008C; 1H NMR (250 MHz; pyridine): d=0.72 (br, 14H), 1.03 (br,
30H), 2.24 (br, 8H), 4.95 (br, 6H), 7.45–7.60 (br, 8H), 7.90–8.30 (m,
16H), 8.50–860 (br, 8H), 8.93 ppm (br, 4H); MS (MALDI-TOF) (n=1):
m/z (%): 1292.3 (100) [M+Na]+ (polymeric structures are observed up
to n=10); HRMS (electrospray) (n=1): calcd: 1267.7514; found:
1267.7508; UV/Vis (CHCl3, 5.3610À6 molLÀ1): l=414 nm; fluorescence:
lmax =477 nm.
[9] N. Giuseppone, J.-M. Lehn, Chem. Eur. J. 2006, 12, 1715 (preceding
paper).
[10] N. Giuseppone, J.-M. Lehn, J. Am. Chem. Soc. 2004, 126, 11448.
[11] For recent reviews on polyfluorenes, see: a) M. Leclerc, J. Polym.
Sci. Part A 2001, 39, 2867; b) U. Scherf, S. Riechel, U. Lemmer, R. F.
Mahrt, Curr. Opin. Solid State Mater. Sci. 2001, 5, 143; c) U. Scherf,
E. J. W. List, Adv. Mater. 2002, 14, 477.
[12] a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.
Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347,
539; b) Y. Ohmori, A. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl.
Phys. Part 2 1991, 30, L1941; c) Pei, Q.; Yang, Y. J. Am. Chem.
Soc. 1996, 118, 7416; d) D. Neher, Macromol. Rapid Commun. 2001,
22, 1365; e) S. Becker, C. Ego, A. C. Grimsdale, E. J. W. List, D.
Marsitzky, A. Pogantsch, S. Setayesh, G. Leising, K. Müllen, Synth.
Met. 2002, 125, 73; f) for solution-phase electroluminescence, see:
J. B. Edel, A. J. deMello, J. C. deMello, Chem. Commun. 2002, 1954.
[13] a) M. Ranger, M. Leclerc, Macromolecules 1999, 32, 3306; b) P.
Blondin, J. Bouchard, S. BeauprØ, M. BelletÞte, G. Durocher, M. Le-
clerc, Macromolecules 2000, 33, 5874.
Polymer (6): The product was synthesized by using the general method
and obtained as a white powder (yield 95%); M.p. (decomp) 2708C;
1H NMR(400 MHz) (CDCl3): d=0.60 (br, 4H), 0.78 (m, 6H), 1.05–1.13
(m, 12H), 1.62 (br, 2H), 1.90–2.08 (m, 6H), 2.10–2.20 (br, 4H), 3.39 (br,
2H), 2.08–2.11 (m, 4H), 7.75–7.85 (m, 6H), 8.50 ppm (s, 2H); MS
(MALDI-TOF; repeated fragments of the main unit): m/z: 470 [M+H]+
(polymeric structures are observed up to n=14); UV/Vis (CHCl3, 6.68
10À5 molLÀ1): l=345, 331, 309 nm; fluorescence: lmax =431 (lexit =380),
lmax =370 nm (lexit =320 nm).
Polymer (7): The product was synthesized by using the general method
and obtained as a bright yellow powder (yield 96%); M.p. >3608C
1
(decomp); H NMR (400 MHz) (CDCl3): d=0.65 (br, 4H), 0.78 (m, 6H),
1.05–1.13 (m, 12H), 2.10–2.20 (br, 4H), 7.40–7.60 (br, 4H), 7.80–7.95 (br,
4H), 8.02 (s, 2H), 8.67 (s, 2H); MS (MALDI-TOF; repeated fragments
of the main unit): m/z: 463 [M+H]+ (polymeric structures are observed
up to n=32); UV/Vis (CHCl3, 1.5610À5 molLÀ1): l=420 nm; fluores-
cence: lmax =490 nm.
[14] J.-M. Lehn, Supramolecular Chemistry—Concepts and Perspectives,
VCH, Weinheim, 1995, Chapters 9 and 10.
Polymer (8): The product was synthesized by using the general method
and obtained as a bright yellow powder (yield 98%); M.p. >3608C
[15] During the course of our studies, polymers related to polyimino-
fluorenes were described, as good candidates for optoelectronic de-
vices, but they were not used for dynamic chemistry, see: K. Hyun-
Chul, K. Jong-Seong, K. Kie-Soo, P. Honk-Ki, B. Sungsik, R. Moon-
hor, J. Polym. Sci. Part A 2004, 42, 825.
[16] a) The resonance imine signals were assigned on the basis of the
spectra of isolated compounds 1 and 2; b) before being subjected to
exchange, the library was equilibrated for 24 h in chloroform from
starting materials; c) when the amount of CF3CO2D increases, the
rate of the equilibration process is faster than the time necessary for
running a proton NMR experiment; these kinetic aspects (b and c
are discussed below.
[17] Starting with a 5:2:1 solution of cyclopentylamine/2-aminofluorene/
2,7-fluorenedicarboxaldehyde, leads to a system that contains only
compound 1 in the same conditions of H+ concentration and tem-
perature. The use of an equimolar ratio is nevertheless important
for further polymerization reactions.
1
(decomp); H NMR (400 MHz) (CDCl3): d=0.69 (br, 4H), 0.78 (m, 6H),
1.00–1.20 (br, 12H), 2.10–2.20 (br, 4H), 4.00(br, 2H), 7.33–7.40 (m, 2H),
7.40–7.60 (m, 2H), 7.80–8.00 (m, 6H), 8.03 (s, 2H), 8.70 ppm (s, 2H); MS
(MALDI-TOF; repeated fragments of the main unit): m/z: 551 [M+H]+
(polymeric structures are observed up to n=18); UV/Vis (CHCl3, 1.16
10À5 molLÀ1): l=418 nm; fluorescence: lmax =493 nm.
Polymer (9): The product was synthesized by using the general method
and obtained as a bright yellow powder (yield 94%); M.p. >3608C
1
(decomp); H NMR (400 MHz) (CDCl3): d=0.65 (br, 4H), 0.78 (m, 6H),
1.00–1.20 (br, 12H), 2.00–2.20 (br, 4H), 7.20 (s, 2H), 7.35 (d, 3J=7.3 Hz,
4H), 7.63 (d, 3J=7.3 Hz, 4H), 7.83–7.88 (m, 4H), 8.01 (s, 2H), 8.64 ppm
(s, 2H); MS (MALDI-TOF; repeated fragments of the main unit): m/z:
565 [M+H]+ (polymeric structures are observed up to n=25); UV/Vis
(CHCl3, 1.1510À5 molLÀ1): l=422 nm; fluorescence: lmax =496 nm.
[18] The conversion aspect (ꢀImines/ꢀAldehydes) is not discussed for
each H+ concentration as this ratio is always higher than 97%,
except for 10À1 m (85%) and for values above 1m.
[19] For example, at 348 K and for [CF3CO2D]=1m, bis-imine 1 starts to
decompose into the monoaromatic imine monoaldehyde (product
[1] a) J.-M. Lehn, Proc. Natl. Acad. Sci. USA 2002, 99, 4763; b) J.-M.
Lehn, Science 2002, 295, 2400.
[2] S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F.
Stoddart, Angew. Chem. 2002, 114, 938; Angew. Chem. Int. Ed.
2002, 41, 898.
1734
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 1723 – 1735