Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles
action. The reaction works especially well for benzyl
[1]
G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580,
44–57.
For reviews, see: a) B. E. Maryanoff, A. B. Reitz, Chem. Rev.
1989, 89, 863–927; b) M. Edmonds, A. Abell in Modern Car-
bonyl Olefination (Ed.: T. Takeda), Wiley-VCH, Weinheim,
2009, pp. 1–17.
alcohols and semistabilised benzyl ylides, whereas the sub-
strate scope is more limited in the case of alkyl alcohols or
nonstabilised ylides. In the former case, a wide range of
[2]
stilbenes were obtained in modest-to-high isolated yields,
depending on the electronic character of the substituent and
position in the aromatic ring. In general, the process exhib-
[3]
R. E. Ireland, D. W. Norbeck, J. Org. Chem. 1985, 50, 2198–
2200.
its low diastereoselectivity, though the Z/E mixtures could
be separated, in some cases, by column chromatography or
[4]
a) For a review, see: R. J. K. Taylor, M. Reid, J. Foot, S. A.
Raw, Acc. Chem. Res. 2005, 38, 851–869; b) For a recent appli-
cation, see: D. J. Phillips, A. E. Graham, Synlett 2008, 649–652.
A. G. M. Barrett, D. Hamprecht, M. Ohkubo, J. Org. Chem.
1997, 62, 9376–9378.
S. Shuto, S. Niizuma, A. Matsuda, J. Org. Chem. 1998, 63,
4489–4493.
A. Maiti, J. S. Yadav, Synth. Commun. 2001, 31, 1499–1506.
R. N. MacCoss, E. P. Balskus, S. V. Ley, Tetrahedron Lett.
2003, 44, 7779–7781.
quantitatively transformed into the E stereoisomers by io-
dine-catalysed or radical isomerisation. To the best of our
knowledge, this is the first metal-mediated chemoselective
Wittig-type olefination reaction with alcohols, in which
there is no standard redox step. Moreover, the reaction pro-
ceeds in the absence of any additive as a hydrogen acceptor.
A series of polymethoxylated stilbenes as well as resveratrol,
[5]
[6]
[7]
[8]
DMU-212 and analogues, such as M5, dehydrobrittonin A [9]
or M8, were synthesised by using this novel Wittig-type ole-
fination as the key step.
a) A. R. Bressette, L. C. Glover IV, Synlett 2004, 738–740; b)
J. Shet, V. Desai, S. Tilve, Synthesis 2004, 1859–1863.
F. R. Pinacho Crisostomo, R. Carrillo, T. Martin, F. Garcia-
Tellado, V. S. Martin, J. Org. Chem. 2005, 70, 10099–10101.
J. M. Vatèle, Tetrahedron Lett. 2006, 47, 715–718.
For reviews, see: a) M. H. S. Hamid, P. A. Slatford, J. M. J. Wil-
liams, Adv. Synth. Catal. 2007, 349, 1555–1575; b) T. D. Nixon,
M. K. Whittlesey, J. M. J. Williams, Dalton Trans. 2009, 753–
762.
[10]
[11]
[12]
Experimental Section
General Procedure for the NiNPs-Promoted Wittig-Type Olefination
of Primary Alcohols and Phosphorus Ylides
[13]
[14]
E. Y. Lee, Y. Kim, J. S. Lee, J. Park, Eur. J. Org. Chem. 2009,
2943–2946.
Method A: nBuLi (1.6 in hexanes, 625 µL, 1.0 mmol) was added
dropwise to a suspension of the corresponding phosphonium ha-
lide (1.5 mmol) in THF (2 mL) at 0 °C. While the corresponding
ylide was being formed (ca. 20 min), nickel(II) chloride (130 mg,
1 mmol) was added over a suspension of lithium (14 mg, 2 mmol)
and DTBB (13 mg, 0.05 mmol) in THF (2 mL) at room tempera-
ture under an atmosphere of argon. The reaction mixture, which
was initially dark blue, changed to black, indicating that nickel(0)
was formed. After 10 min, the corresponding benzyl alcohol
(1 mmol) and the initially prepared ylide suspension were added to
the NiNPs suspension. The reaction mixture was warmed to reflux
and monitored by GLC–MS. The resulting mixture was diluted
with EtOAc (10 mL), filtered through a pad of Celite and the fil-
trate was dried with anhydrous MgSO4. The residue obtained after
removal of the solvent (15 Torr) was purified by column
chromatography (silica gel, hexane or hexane/EtOAc) to give the
pure product.
a) J. Gorham, The Chemistry of the Stilbenoids, Chapman &
Hall, London, 1995. See, for instance: b) E. Garo, J.-F. Hu, M.
Goering, G. Hough, M. O’Neil-Johnson, G. Eldridge, J. Nat.
Prod. 2007, 70, 968–973; c) R. Siles, J. F. Ackley, M. B. Hadim-
ani, J. J. Hall, B. E. Mugabe, R. Guddneppanavar, K. A.
Monk, J.-C. Chapuis, G. R. Petit, D. J. Chaplin, K. Edvardsen,
M. L. Trawick, C. M. Garner, K. G. Pinney, J. Nat. Prod. 2008,
71, 313–320; d) A. Gosslau, S. Pabbaraja, S. Knapp, K. Y.
Chen, Eur. J. Pharmacol. 2008, 587, 25–34.
For a review, see: K. Ferré-Filmon, L. Delaude, A. De-
monceau, A. F. Noels, Coord. Chem. Rev. 2004, 248, 2323–
2336.
For a monograph, see: B. B. Aggarwall, S. Shishodia (Eds.),
Resveratrol in Health and Disease, Taylor & Francis, Boca Ra-
ton, FL, USA, 2006.
For reviews, see: a) M. C. Pinto, J. A. García-Barrado, P.
Macías, Recent Res. Devel. Biochem. 2004, 5, 281–290; b) B.
Zhou, Z.-L. Liu, Pure Appl. Chem. 2005, 77, 1887–1903.
For a review, see: G. L. Russo, Biochem. Pharmacol. 2007, 74,
533–544.
For a review, see: A. Minerva, Cosmetic News 2006, 29, 398–
404.
For a review, see: W.-X. Tian, Curr. Med. Chem. 2006, 13, 967–
977.
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
Method B: Following method A but the phosphorus ylide was gen-
erated in situ (ca. 20 min) by addition of the phosphonium halide
to a NiNPs suspension, prepared as aforementioned by using an
excess amount of lithium powder (28 mg, 4 mmol). Then, the corre-
sponding alcohol was added to the resulting mixture. The dia-
For a review, see: H. I. Rocha-González, M. Ambriz-Tututi, V.
Granados-Soto, CNS Neurosci. Ther. 2008, 14, 234–247.
a) J. J. Heynekamp, W. M. Weber, L. A. Hunsaker, A. M. Gon-
zales, R. A. Orlando, L. M. Deck, D. L. Vander Jagt, J. Med.
Chem. 2006, 49, 7182–7189; b) W. Zhang, M. L. Go, Eur. J.
Med. Chem. 2007, 42, 841–850, and references cited therein; c)
A. Gosslau, S. Pabbaraja, S. Knapp, K. Y. Chen, Eur. J. Phar-
macol. 2008, 587, 25–34.
1
stereomeric ratio was determined on the basis of the GC and H
NMR spectroscopic analyses.
Supporting Information (see also the footnote on the first page of
this article): General experimental details, methods and compound
characterisation data.
[23]
a) S. Sale, R. D. Verschoyle, D. Boocock, D. J. L. Jones, N.
Wilsher, K. C. Ruparelia, G. A. Potter, P. B. Farmer, W. P.
Steward, A. J. Gescher, Br. J. Cancer 2004, 90, 736–744; b) S.
Sale, R. G. Tunstall, K. C. Ruparelia, G. A. Potter, W. P. Stew-
ard, A. J. Gescher, Int. J. Cancer 2005, 115, 194–201; c) Z. Ma,
O. Molavi, A. Haddadi, R. Lai, R. A. Gossage, Cancer Che-
mother. Pharmacol. 2008, 63, 27–35.
Acknowledgments
This work was generously supported by the Spanish Ministerio de
Educación y Ciencia (MEC) (grant no. CTQ2007-65218 and Con-
solider Ingenio 2010-CSD2007-00006). P. R. thanks the MEC for
a predoctoral grant.
Eur. J. Org. Chem. 2009, 6034–6042
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6041