Page 5 of 10
Journal of the American Chemical Society
for molecular biology assistance. R.E.K. is a Dale F.
analyzed as in Fig. 1b (see Supplementary Fig. 15 for
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
full WB). Asterisks represent statistically significant
differences in cross-linking between probes 2 and 6,
and probes 6 and 8 (*: p < 0.05; **: p < 0.005).
Frey Breakthrough Scientist of the Damon Runyon
Cancer Research Foundation (DFS #21-16) and a Sid-
ney Kimmel Foundation Scholar. All authors thank
Princeton University for financial support.
modified RNA. We identified YTH-domain pro-
teins and ALKBH5, known ‘readers’ and ‘erasers’ of
this mark, thereby validating our method. In addi-
REFERENCES
6
tion, we found novel m A binders LRPPRC and
1.
Cantara, W. A.; Crain, P. F.; Rozenski, J.; McCloskey,
FMR1 and showed that G3BP1/2, RBM42, USP10 and
J. A.; Harris, K. A.; Zhang, X.; Vendeix, F. A.; Fabris, D.; Agris,
P. F. Nucleic Acids Res 2011, 39 (Database issue), D195-201.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
6
CAPRIN1 are repelled by the m A modification.
6
2.
Li, X.; Xiong, X.; Yi, C. Nat Methods 2016, 14 (1), 23-31.
Our results demonstrate that the m A-regulated
3.
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz,
protein-RNA interactome is more diverse than pre-
viously appreciated. We speculate that these novel
protein-RNA interactions may regulate aspects of
mRNA metabolism or protein translation, analo-
gous to the known functions of YTH domain-
S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.;
Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi,
G. Nature 2012, 485 (7397), 201-6.
4.
Mason, C. E.; Jaffrey, S. R. Cell 2012, 149 (7), 1635-46.
5. Gerstberger, S.; Hafner, M.; Tuschl, T. Nat Rev Genet
014, 15 (12), 829-45.
Wang, X.; Lu, Z.; Gomez, A.; Hon, G. C.; Yue, Y.; Han,
Meyer, K. D.; Saletore, Y.; Zumbo, P.; Elemento, O.;
23-24
containing proteins. Indeed, both FMR1
and
2
25
LRPPRC are involved in translational regulation.
Many of the proteins that we identified as specific
binders of unmethylated RNA are found in stress
granules, cytoplasmic foci that protect mRNA dur-
6.
D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; Ren, B.; Pan, T.; He, C.
Nature 2014, 505 (7481), 117-20.
7.
Wang, X.; Zhao, B. S.; Roundtree, I. A.; Lu, Z.; Han,
D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. Cell 2015, 161 (6),
20
ing periods of stress . Our findings suggest that
1388-99.
6
the absence of m A may promote RNA stability or
8.
Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y. S.; Hao, Y.
J.; Sun, B. F.; Sun, H. Y.; Li, A.; Ping, X. L.; Lai, W. Y.; Wang, X.;
Ma, H. L.; Huang, C. M.; Yang, Y.; Huang, N.; Jiang, G. B.;
Wang, H. L.; Zhou, Q.; Wang, X. J.; Zhao, Y. L.; Yang, Y. G. Mol
Cell 2016, 61 (4), 507-19.
regulate the incorporation of mRNA into stress
granules.
Finally, our findings demonstrate that diazirine
nucleotides can mediate higher efficiency photo-
crosslinking than sulfur- or halogen-containing
nucleotides and show that diazirines warrant fur-
ther consideration as nucleic acid photo-affinity
reagents. In principle, with appropriate selection
and placement of photo-crosslinker, the approach
described herein should be adaptable to study the
interactome of any post-transcriptional RNA modi-
fication and provides a powerful tool for decoding
the function of the RNA epitranscriptome.
9
.
Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.;
Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.;
Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.;
Dewell, S.; Zavolan, M.; Tuschl, T. Cell 2010, 141 (1), 129-41.
10.
Licatalosi, D. D.; Mele, A.; Fak, J. J.; Ule, J.; Kayikci,
M.; Chi, S. W.; Clark, T. A.; Schweitzer, A. C.; Blume, J. E.;
Wang, X.; Darnell, J. C.; Darnell, R. B. Nature 2008, 456 (7221),
4
64-9.
1.
Chem 2012, 20 (2), 554-70.
1
Dubinsky, L.; Krom, B. P.; Meijler, M. M. Bioorg Med
12.
Kauer, J. C.; Erickson-Viitanen, S.; Wolfe, H. R., Jr.;
DeGrado, W. F. J Biol Chem 1986, 261 (23), 10695-700.
1
3.
W.; Li, Y.; Lu, Z.; He, C.; Min, J. Nat Chem Biol 2014, 10 (11),
27-9.
4.
L.; Sun, C.; Tian, Y.; Li, J.; He, C.; Xu, Y. Cell Res 2014, 24 (12),
Xu, C.; Wang, X.; Liu, K.; Roundtree, I. A.; Tempel,
ASSOCIATED CONTENT
9
1
Zhu, T.; Roundtree, I. A.; Wang, P.; Wang, X.; Wang,
Supporting Information. Supplementary Methods,
RNA probe characterization, Supplementary Figures
and proteomics data is available free of charge on the
ACS Publications website.
1493-6.
15.
Michlewski, G.; Caceres, J. F. RNA 2010, 16 (8), 1673-
8.
16.
Shi, H.; Wang, X.; Lu, Z.; Zhao, B. S.; Ma, H.; Hsu, P.
AUTHOR INFORMATION
J.; Liu, C.; He, C. Cell Res 2017, 27 (3), 315-328.
7. Zheng, G.; Dahl, J. A.; Niu, Y.; Fedorcsak, P.; Huang,
1
Corresponding Author
C. M.; Li, C. J.; Vagbo, C. B.; Shi, Y.; Wang, W. L.; Song, S. H.;
Lu, Z.; Bosmans, R. P.; Dai, Q.; Hao, Y. J.; Yang, X.; Zhao, W.
M.; Tong, W. M.; Wang, X. J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia,
G.; Zhao, X.; Liu, J.; Krokan, H. E.; Klungland, A.; Yang, Y. G.;
He, C. Mol Cell 2013, 49 (1), 18-29.
Funding Sources
No competing financial interests have been declared.
18.
Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.;
ACKNOWLEDGMENT
Yi, C.; Lindahl, T.; Pan, T.; Yang, Y. G.; He, C. Nat Chem Biol
2011, 7 (12), 885-7.
We thank Tharan Srikumar and the Princeton Univer-
sity Mass Spectrometry and Proteomics Core Facility
for proteomics analysis. We thank Jared M. Shulkin
19.
Jin, P.; Warren, S. T. Hum Mol Genet 2000, 9 (6), 901-
8.
5
ACS Paragon Plus Environment