C O MMU N I C A T I O N S
In summary we have demonstrated for the first time that the
6
room-temperature [BMI][PF ] IL is not only a suitable medium
1
1
for the preparation and stabilization of transition-metal nanopar-
ticles but also ideal for the generation of recyclable biphasic
hydrogenation systems. Inasmuch, a plethora of imidazolium ILs
(with different physical-chemical properties) can be easily prepared
by varying the anion and the alkyl chain on the aromatic ring, and
this thereby opens the possibility for the preparation of distinct
nanoparticles, for biphasic catalysis.
Acknowledgment. We are grateful to FAPERGS and CTPE-
TRO for financial support and to CAPES for scholarships.
Supporting Information Available: Experimental procedures
(preparation and characterization of the nanoparticles) (PDF). This
material is available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) Applied Homogeneous Catalysis with Organometallic Compounds;
Cornils, B., Herrmann, W. A., Eds.; Wiley-VCH: Weinheim, 1996. (b)
Herrmann, W. A.; Cornils, B. Angew. Chem., Int. Ed. Engl. 1997, 36,
1049-1067.
(
2) (a) Welton, T. Chem. ReV. 1999, 99, 2071-2083. (b) Wasserscheid, P.;
Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3773-3789. (c) Sheldon, R.
Chem. Commun. 2001, 2399-2407.
(
3) See for example: Gates, B. C. Chem. ReV. 1995, 95, 511-522.
4) (a) Lewis, L. N. Chem. ReV. 1993, 93, 2693-2730. (b) Aiken, J. D.; Finke,
R. G. J. Mol. Catal. A: Chem. 1999, 145, 1-44. (c) Aiken, J. D.; Lin,
Y.; Finke, R. G. J. Mol. Catal. A: Chem. 1996, 114, 29-51. (d) Finke,
R. G. Transition-Metal Nanoclusters: Solution-Phase Synthesis, Then
Characterization and Mechanism of Formation, of Polyoxoanion- and
Tetrabutylammonium-Stabilized Nanoclusters in Metal Nanoparticles:
Synthesis, Characterization and Applications; Feldheim, D. L., Foss, C.
A., Jr., Eds.; Marcel Dekker: New York, 2002; Chapter 2, pp 17-54.
(
Figure 3. (a) TEM micrograph showing the Ir nanoparticles observed at
2
00 kV with a magnification of 500K and an underfocus of ∼500 nm. (b)
(5) See for example: (a) Aiken, J. D.; Finke, R. G. J. Am. Chem. Soc. 1998,
120, 9545-9554. (b) Weddle, K. S.; Aiken, J. D.; Finke, R. G. J. Am.
Chem. Soc. 1998, 120, 5653-5666. (c) Aiken, J. D.; Finke, R. G. J. Am.
Chem. Soc. 1999, 121, 8803-8810. (d) Aiken, J. D.; Finke, R. G. Chem.
Mater. 1999, 11, 1035-1047. (e) Widegren, J. A.; Aiken, J. D.; Ozkar,
S.; Finke, R. G. Chem. Mater. 2001, 13, 312-324. (f) Watzky, M. A.;
Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382-10400. (g) Watzky,
M. A.; Finke, R. G. Chem. Mater. 1997, 9, 3083-3095. (h) Pan, C.; Pelzer,
K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.
J. J. Am. Chem. Soc. 2001, 123, 7584-7593. (i) Pellegatta, J.-L.; Blandy,
C.; Colliere, V.; Choukron, R.; Chaudret, B.; Cheng, P.; Philippot, K. J.
Mol. Catal. A-Chem. 2002, 178, 55-61. (j) Schulz, J.; Roucoux, A.; Patin,
H. Chem. Eur. J. 2000, 6, 618-624. (k) Schulz, J.; Roucoux, A.; Patin,
H. Chem. Commun. 1999, 535-536. (l) Reetz, M. T.; Maase, M. AdV.
Mater. 1999, 11, 773-777. (m) Reetz, M. T.; Winter, M.; Breinbauer,
R.; Thurn-Albrecht, T.; Vogel, W. Chem. Eur. J. 2001, 7, 1084-1094.
Histogram illustrating the particle size distribution. The approximate number
of Ir atoms estimated for spherical particles of the corresponding diameter
is indicated in each bar. (Ir particles isolated after catalysis).
6
nanoparticles in [BMI][PF ] maintain their efficiency for up to at
least seven recycles (total turnovers > 8 400).
An Hg test5b clearly indicated the presence of Ir particles (see
Supporting Information) in the system formed by the reduction of
6
the Ir(I) precursor in [BMI][PF ]. Moreover, these particles can be
isolated by centrifugation (0.5 h at 3000 rpm) from the catalytic
mixture. The black solid thus obtained was analyzed by transmission
electron microscopy TEM (Figure 3).
The particles display an irregular shape (Figure 3a), parametrized
by a characteristic diameter, which shows a monomodal distribution
(n) Reetz, M. T.; Lohmer, G. Chem. Commun. 1996, 1921-1922. (o)
Beller, M.; Fischer, H.; Kuhlein, K.; Reisinger, C. P.; Herrmann, W. A.
J. Organomet. Chem. 1996, 520, 257-259. (p) Klingelhofer, S.; Heitz,
W.; Greiner, A.; Oestreich, S.; Forster, S.; Antonietti, M. J. Am. Chem.
Soc. 1997, 119, 10116-10120. (q) Chen, C. W.; Akashi, M. Langmuir
1
997, 13, 6465-6472. (r) Bronstein, L. M.; Sidorov, S. N.; Gourkova,
(Figure 3b) with a mean diameter of 2.0 nm and a standard deviation
A. Y.; Valetsky, P. M.; Hartmann, J.; Breulmann, M.; Colfen, H.;
Antonietti, M. Inorg. Chim. Acta 1998, 280, 348-354.
of 0.4. Energy dispersion spectrometry indicates the presence of
Ir, and selected area diffraction shows ring patterns which can be
fitted to simulation based on Ir(0) parameters.
Moreover, Ir(0) can be clearly identified from the X-ray spectrum
of the nanoparticles isolated after the reaction. Using the Sherrer
equation and assuming spherical particles, the mean diameter of
the Ir(0) particles was estimated to be around 2.5 nm, in good
agreement with the TEM images. These Ir nanoparticle patterns
(
6) (a) Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; deSouza, R. F.; Dupont,
J. Polyhedron 1996, 15, 1217-1219. (b) Chauvin, Y.; Mussmann, L.;
Olivier, H. Angew. Chem., Int. Ed. Engl. 1996, 34, 2698-2700. (c) Dullius,
J. E. L.; Suarez, P. A. Z.; Einloft, S.; de Souza, R. F.; Dupont, J.; Fischer,
J.; De Cian, A. Organometallics 1998, 17, 815-819.
(
7) For molecular transition-metal clusters in ILs see: (a) Collman, J. P.;
Brauman, J. I.; Tustin, G.; Wann, G. S. J. Am. Chem. Soc. 1983, 105, 5,
9
3
913-3922. (b) Dyson, P. J.; Ellis, D. J.; Parker, D. G.; Welton, T. Chem.
Commun. 1999, 25-26.
(8) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95-101.
(
9) Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; John Wiley:
New York, 1974, Chapter 9.
are similar to those obtained by Finke from the H
Bu N]Na [1,5-cod)Ir‚P
62] in acetone.5g The isolated Ir
nanoparticles can be used directly for heterogeneous processes or
re-immobilized in [BMI][PF ] and reused for the hydrogenation
2
reduction of
[
4
3
2
W
15Nd
3
O
(10) The presence of water in the system causes the decomposition of the [BMI]-
[
PF
6
] IL, however, without affecting the catalytic performance of the ionic
catalytic “solution”.
6
(11) The H
2
reduction of Ru(III) and Rh(III) compounds in [BMI][PF
6
] also
produces nanoparticles that are active for biphasic catalysis.
reactions showing the same catalytic performance to those that have
been freshly prepared.10
JA025818U
J. AM. CHEM. SOC.
9
VOL. 124, NO. 16, 2002 4229