Sb(III) for Water Adsorption on Sb(Sb)O2
J. Phys. Chem. B, Vol. 102, No. 35, 1998 6737
First, we postulate that a correct formulation of “adsorbed
oxygen” is an oxygen molecule trapped in or on a surface
oxygen vacancy. Following Brown and Patterson,4 we propose
that the combustion reaction proceeds partly through these
species and partly through lattice oxygen at the surface. Then
we propose that water competes with oxygen for the surface
vacancies, blocking this route. This accounts for the diminution
in the rate of the surface-catalyzed reaction in the presence of
water. To account for the effect of antimony segregation on
the reaction, we presume that the surface vacancy is correctly
formulated as an association of Sn(II) with the vacancy in the
absence of antimony, and of Sb(III) with the vacancy in the
presence of surface-segregated antimony. Then we propose that
the binding energy of water to the Sb(III)‚VO surface defect
complex is less than that to the Sn(II)‚VO complex. The
temperature variation of combustion rate would then correspond
simply to the desorption of water from the defect complex. The
apparent activation energy for combustion on the Sb-segregated
sample would measure the heat of adsorption of water onto the
surface defect.
identified consequences linked to the adsorption of water.
Discussion of these has suggested formulations for the surface
defect states which mediate both the electrical behavior and the
surface-catalyzed combustion.
Acknowledgment. We would like to thank the Engineering
and Physical Sciences Research Council of the UK, Capteur
Sensors and Analyzers Ltd., and the Ford Motor Company for
financial support of this work.
References and Notes
(1) Berry, F. J.; AdV. Catal. 1981, 30, 97.
(2) Weng, L. T.; Delmon, B. Appl. Catal. A 1992, 81, 141.
(3) McAteer, J.; J. Chem. Soc., Faraday Trans. 1 1979, 75, 2768.
(4) Brown, I.; Patterson, W. R., J. Chem. Soc., Faraday Trans. 1 1983,
79, 1431.
(5) Caldararu, M.; Popa, V. T.; Sprinceana, D.; Ionescu, N. I. Appl.
Catal. A 1995, 125, 247.
(6) Ono, T.; Yamanaka, T.; Kubokawa, Y.; Komiyama, M. J. Catal.
1988, 109, 423.
(7) Pyke, D. R.; Reid, R.; Tilley, R. J. D. J. Chem. Soc., Faraday Trans.
1 1980, 76, 1174.
(8) Volta, J. C.; Bussiere, P.; Coudurier, A.; Hermann, J. M.; Vedrine,
J. C. Appl. Catal. 1985, 16, 315.
Now we can make a connection between this interpretation
and the electrical behavior. First, an elementary reaction
between oxygen and a surface defect complex can be written:
(9) Wakabayashi, K.; Kamyia, Y.; Ohta, H. Bull. Chem. Soc. Jpn. 1967,
40, 2172.
(10) Trimm, D. L.; Gabbay, D. S. Trans. Faraday Soc. 1971, 67, 2782.
(11) Cross, Y. M.; Pyke, D. R. J. Catal. 1979, 58, 61.
(12) Crozat, M.; Germain, J. E. Bull. Soc. Chim. France 1973, 1, 1125.
(13) Atkinson, L.; Day, P. J. Chem. Soc. A 1969, 2423.
(14) Pyke, D. R.; Reid, R.; Tilley, R. J. D. J. Solid State Chem. 1978,
25, 1636.
2n/
9
[SnSn//‚VO2•] + O2 f [SnSn‚OO]-O
8 [SnSn‚OO]-O2-
(1)
(15) Orchard, A. F.; Thornton, G. J. Chem. Soc., Dalton Trans. 1977,
13, 1238.
The overall stoichiometry of this reaction can be represented
(16) Marley, J. A.; Dockerty, R. K. Phys. ReV. 1965, 140, A304.
(17) Cox, P. A.; Egdell, R. G.; Orchard, A. F.; Harding, C.; Patterson,
W. R.; Tavener, P. J. Solid State Commun. 1982, 44, 837.
(18) Hermann, J. M.; Portefaix, J. L.; Forissier, M.; Figueras, F.; Pichat,
P. J. Chem. Soc., Faraday Trans. 1 1979, 75, 1346.
(19) Cox, P. A.; Egdell, R. G.; Flavell, W. R.; Kemp, J. P.; Potter, F.
H.; Rastomjee, C. S. J. Electron. Spectrosc. 1990, 54/55, 1173.
(20) McAleer, J. F.; Moseley, P. T.; Norris, J. O. W.; Williams, D. E.;
Tofield, B. C. J. Chem. Soc., Faraday Trans. 1 1987, 83, 1323.
(21) Morrison, S. R. Sens. Actuators 1982, 2, 329.
(22) Heiland, G. Sens. Actuators 1982, 2, 343.
(23) Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. Surf. Sci.
1979, 86, 335.
(24) Williams, D. E. In Solid State Gas Sensors; Moseley, P. T., Tofield,
B. C., Eds.; Adam Hilger: Bristol, 1987.
(25) Gercher, V. A.; Cox, D. F. Surf. Sci. 1995, 322, 177.
(26) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides;
Cambridge University Press: Cambridge, 1994; p 316.
(27) Egdell, R. G.; Flavell, W. R.; Tavener, P. J. J. Solid State Chem.
1984, 51, 345.
as
4n/ + VO•• + O2 f OO + O2-
ads
in which two electrons are trapped for each surface oxygen atom,
as the interpretation of the electrical behavior requires. Interest-
ingly, the mechanism as formulated here does not require
dissociation of molecular oxygen.
A dissociative adsorption of water onto the surface defect
complex is proposed:
[SnSn//‚VO••] + OO + HOH f [OH•O‚SnSn//‚OH•O] (2)
In comparison with eq 1, the surface electron trap in eq 2
may lie at higher energy in the band gap, so replacement with
water of oxygen adsorbed at the defect results in an increase of
conductivity. Where Sb is surface segregated, the surface defect
complex could be written [SbSn/‚VO••‚SbSn/]. A similar formula-
tion for the surface reactions can then be made. If the energy
difference between OH state and oxygen state is bigger on this
site, then the effect of water vapor on the conductivity would
be larger. Such a statement is consistent with water being less
strongly bound at this state than at the tin defect state represented
in eq 2, and is thus consistent with the interpretation of the
effect on combustion kinetics advanced above.
(28) Cox, P. A.; Egdell, R. G.; Harding, C.; Patterson, W. R.; Tavener,
P. J. Surf. Sci. 1982, 123, 179-203.
(29) Henshaw, G. S.; Gellman, L. J.; Williams, D. E. J. Mater. Chem.
1994, 4, 1427-1431.
(30) Wagner, C. D. In Practical Surface Analysis, 2nd ed.; Briggs, D.;
Seah, M. P., eds.; Auger and X-ray Photelectron Spectroscopy, Vol. 1;
Wiley: Chichester, 1990; p 595.
(31) Williams, D. E.; Henshaw, G. S.; Pratt, K. F. E.; Peat, R. J. Chem.
Soc., Faraday Trans. 1995, 91(23), 4299-4307.
(32) Rastomjee, C. S.; Egdell, R. G.; Lee, M. J.; Tate, T. J. Surf. Sci.
Lett. 1991, 259, L769.
(33) Rastomjee, C. S.; Egdell, R. G.; Georgiadis, G. C.; Lee, M. J.;
Tate, T. J. J. Mater. Chem. 1992, 2(5), 511.
In summary, the study of the effect on electrical response
and on combustion kinetics of Sb segregation in SnO2 has
(34) Themlin, J. M.; Sporken, R.; Darville, J.; Caudano, R.; Gilles, J.
M.; Johnson, R. L. Phys. ReV. B 1990, 42, 11914.