Table 2 Activation parameters of the dechlorination/degradation of chlorinated acetates
H2O-induced
H2O-induced
OHϪ-induced
OHϪ-induced
Chlorinated acetate
A/sϪ1
Ea/kJ molϪ1
A/dm3 molϪ1 sϪ1
Ea/kJ molϪ1
Chloroacetate
Dichloroacetate
Trichloroacetate
6.4 × 1015
3.2 × 1016
2.1 × 1017 a
148
156
146a
1.6 × 109
3.2 × 1010
—
86
104
—
a First-order but not H2O-induced.
in 1 M NaOH at 150 ЊC, or in water at 180 ЊC, i.e. there is a
trade-off between the operation of the process at relatively low
overpressures but in a relatively corrosive reaction medium, and
vice versa.
Acknowledgements
Partial financial support by the German Federal Ministry of
Education and Research (Project No. 02WT9656/57) and the
Stadtwerke Düsseldorf AG (Project No. 230/45083468) is
gratefully acknowledged.
References
1 R. Koppmann, F. J. Johnen, C. Plass-Dülmer and J. Rudolph,
J. Geophys. Res., 1993, 98, 20517.
2 A. McCulloch and P. M. Midgley, Atmos. Environ., 1996, 40, 601.
3 L. Prager, R. Mehnert, A. Sobottka, H. Langguth, W. Baumann,
W. M ätzing, H.-R. Paur, J. Schubert, R. Rashid, K. M. Taba,
H.-P. Schuchmann and C. von Sonntag, J. Adv. Oxid. Technol., 1998,
3, 87.
Fig. 7 Degree of degradation cmeasured/cmax of dichloroacetate (᭹)
without alkali; liberated chloride (); sum (᭝) of 2 × dichloroacetate
and liberated chloride; contact time in the hydrothermal flow reactor,
480 s. Inset: trichloroacetate (᭹), liberated chloride (), sum (᭝) of
3 × trichloroacetate and liberated chloride; contact time, 450 s.
4 T. Mill, M. G. Su, C. C. D. Yao, S. M. Matthews and F. T. S. Wang,
Radiat. Phys. Chem., 1997, 50, 283.
5 T. Hakoda, S. Hashimoto, J. Fujiyama and A. Mizuno, J. Phys.
Chem. A, 2000, 104, 59.
6 E. Sanhueza, I. C. Hisatsune and J. Heicklen, Chem. Rev., 1976, 76,
801.
than one bond is ruptured simultaneously, as well as certain
dissociation reactions where a bond is broken that links two
groups of atoms.54 The hydrolytic removal of chloride in the
mono- and dichloroacetates can be viewed as an example of the
first class, e.g. reaction (21), with a C–Cl and an O–H bond
7 W. R. Haag, M. D. Johnson and R. Scofield, Environ. Sci. Technol.,
1996, 30, 414.
8 L. Prager and E. Hartmann, J. Photochem. Photobiol., A, 2001, 138,
177.
ClCH2C(O)OϪ ϩ H2O →
HOCH2C(O)OϪ ϩ ClϪ ϩ Hϩ (21)
9 R. Butler and A. Snelson, J. Air Pollut. Control Assoc., 1979, 29,
being cleaved as a water molecule attaches to the chlorine-
bearing carbon atom. On the other hand, the decomposition of
trichloroacetate seems akin, for instance, to the homolysis of
833.
10 P. Dowideit, R. Mertens and C. von Sonntag, J. Am. Chem. Soc.,
1996, 118, 11288.
11 P. Dowideit, Doctoral thesis, Ruhr-Universität Bochum, 1996.
12 W. H. Manogue and R. L. Pigford, AiChE J., 1960, 6, 494.
13 R. Mertens, C. von Sonntag, J. Lind and G. Merényi, Angew. Chem.,
Int. Ed. Engl., 1994, 33, 1259.
14 R. Köster and K.-D. Asmus, Z. Naturforsch., B. Anorg. Chem. Org.
Chem., 1971, 26, 1108.
15 R. Mertens and C. von Sonntag, J. Chem. Soc., Perkin Trans. 2,
1994, 2181.
16 N. Latif, P. O’Neill, D. Schulte-Frohlinde and S. Steenken, Ber.
Bunsen-Ges. Phys. Chem., 1978, 82, 468.
17 W. J. De Bruin, S. X. Duan, X. Q. Shi, P. Davidovits, D. R. Worsnop,
M. S. Zahniser and C. E. Kolb, Geophys. Res. Lett., 1992, 19, 1939.
18 P. Davidovits, J. H. Hu, D. R. Worsnop, M. S. Zahniser and
C. E. Kolb, Faraday Discuss., 1995, 100, 65.
alkanes [e.g., C(CH3)4 → CH3 ϩ C(CH3)3 has A ~ 1017 sϪ1].54
The activation energy of the OHϪ-catalyzed dechlorination is
seen to increase on going from the mono- to the dichloroacetate
(Table 2, column 5). This is in agreement with the idea that
as the partial charge on the chloromethyl group increases, the
barrier for the entry of OHϪ also increases, so that finally in the
case of the trichloroacetate the hydrolytic pathway is practically
blocked, relative to decarboxylation. It is, moreover, reasonable
to assume that OHϪ attack is at the chloromethyl group not at
the carbonyl group, which in fact has lost its usual character-
istics owing to carboxylate mesomerism.
ؒ
ؒ
19 G. M. Nathanson, P. Davidovits, D. R. Worsnop and C. E. Kolb,
J. Phys. Chem., 1996, 100, 13007.
20 C. E. Kolb, J. T. Jayne, D. R. Worsnop and P. Davidovits, Pure Appl.
Chem., 1997, 69, 959.
21 W. J. De Bruyn, J. A. Shorter, P. Davidovits, D. R. Worsnop,
M. S. Zahniser and C. E. Kolb, Environ. Sci. Technol., 1995, 29,
1179.
22 C. George, J. Lagrange, P. Lagrange, P. Mirabel, C. Pallares and
J. L. Ponche, J. Geophys. Res., 1998, 99, 1255.
23 T. W. Bentley, G. Llewellin and J. A. McAlister, J. Org. Chem., 1996,
61, 7927.
24 V. Gold and J. Hilton, J. Chem. Soc., 1955, 3303.
25 I. Ugi and F. Beck, Chem. Ber., 1960, 94, 1839.
26 V. A. Terentev and V. V. Varfolomeeva, Russ. J. Gen. Chem., 1996,
66, 1954.
27 E. J. Cairns and J. M. Prausnitz, J. Chem. Phys., 1960, 32, 169.
28 R. F. Hudson and G. E. Moss, J. Chem. Soc., 1962, 5157.
Hydrothermal flow reactor
The results of some systematic decomposition studies with a
hydrothermal flow reactor29 (in which the disappearance of the
reactant and the appearance of products were followed as func-
tions of temperature and alkalinity) conform to expectation
based on the foregoing rate constants. This technique has
been applied to chloroacetates before.7 Practically complete
dechlorination (a typical example is shown in Fig. 7) of these
compounds is achievable within a time span in the order of
102 s at temperatures well below 200 ЊC.
In 1 M NaOH as the medium, the half-way point of the
dichloroacetate degradation is shifted to lower temperatures by
about 22 ЊC, i.e. to below 130 ЊC (data not shown). Thus, com-
plete dechlorination of dichloroacetate is achieved after 8 min
1646
J. Chem. Soc., Perkin Trans. 2, 2001, 1641–1647