RSC Advances
Paper
2 J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem.,
Int. Ed., 2007, 46, 7164–7183.
3 G. D. Wen, Y. P. Xu, H. J. Ma, Z. S. Xu and Z. J. Tian, Int.
J. Hydrogen Energy, 2008, 33, 6657–6666.
4 C. Wu, Z. Wang, P. T. Williams and J. Huang, Sci. Rep., 2013,
3, 2742, DOI: 10.1038/srep02742.
5 G. Sadanandam, K. Lalitha, V. Durga Kumari, M. V. Shankar
and M. Subhramanyam, Int. J. Hydrogen Energy, 2013, 38,
9655–9664.
6 I. Fechete, Y. Wang and J. C. Vedrine, Catal. Today, 2012, 189,
2–27.
7 H. Ziaei-azad, C. X. Yin, J. Shen, Y. Hu and D. Karpuzov,
J. Catal., 2013, 300, 113–124.
8 R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and
J. A. Dumesic, Appl. Catal., B, 2005, 56, 171–186.
9 P. D. Vaidya and A. E. Rodrigues, Chem. Eng. Technol., 2009,
32, 1463–1469.
Fig. 11 Effect of Ni loading on g-Al2O3 on the comparison of carbon
formation at 650 ꢀC and GWMRs ¼ 1 : 9; inset is carbon formation in
different GWMRs on the 15NA catalyst at 650 ꢀC.
10 Z. Wei, J. Sun, Y. Li, A. K. Datye and Y. Wang, Chem. Soc. Rev.,
2012, 41, 7994–8008.
11 L. P. R. Profeti, E. A. Ticianelli and E. M. Assaf, Int. J.
Hydrogen Energy, 2009, 34, 5049–5060.
12 N. J. Luo, J. A. Wang, T. C. Xiao, F. H. Cao and D. Y. Fang,
Catal. Today, 2011, 166, 123–128.
13 F. Pompeo, G. Santori and N. Nichio, Int. J. Hydrogen Energy,
2010, 35, 8912–8920.
10NA show more carbon, indicating the availability of acid sites
on alumina supports responsible for coking. Coking is less on
15NA, indicating that the Ni crystallite formed at this concen-
tration is more suitable for reforming (optimum dispersion).
Above this loading, on 20NA and 25NA, coking increased due to
an increase in the Ni crystallite size. The 15NA catalyst further
studied at different GWMRs (Fig. 11 inset) is evaluated for
carbon deposition. The carbon formation increased with
decreasing steam (1.3–4.3 mg carbon per g cat. per h).
14 T. Hirai, N. Ikenaga, T. Miyake and T. Suzuki, Energy Fuels,
2005, 19, 1761–1762.
15 G. W. Huber, J. W. Shabaker and J. A. Dumesic, Science, 2003,
300, 2075–2077.
16 A. Iriondo, V. L. Barrio, J. F. Cambra, P. L. Arias,
M. B. Guemez and M. C. Sanchez-Sanchez, Int. J. Hydrogen
Energy, 2010, 35, 11622–11633.
4 Conclusions
Ni/g-Al2O3 catalysts prepared by the impregnation method were
evaluated for H2 production in glycerol steam reforming. The 15
wt% Ni/g-Al2O3 catalyst produced maximum H2 production and
17 A. M. D. Douette, S. Q. Turn, W. Wang and V. I. Keffer, Energy
Fuels, 2007, 21, 3499–3504.
ꢀ
minimum coking with 100% glycerol conversion at 650 C and
1 : 9 GWMRs. XRD and TPR results are indicating that Ni2+ is
strongly interacted with g-Al2O3 at low loadings. With
increasing Ni loading, the Ni crystallite size increased, and
interaction with the support decreased. TPD of NH3 shows that
total acidity of g-Al2O3 support decreased with Ni loading.
Raman studies of used catalysts also indicate that surface
acidity at lower loadings and Ni crystallite sizes at higher
loadings are responsible for coking. The evaluation and char-
acterization of the Ni/g-Al2O3 catalysts clearly establish that Ni2+
in strong interaction with g-Al2O3 support resulted in well-
dispersed Ni-active sites that are responsible for stable and
sustainable activity with minimum coking.
18 A. Iriondo, V. L. Barrio, J. F. Cambra, P. L. Arias,
M. B. Guemez, R. M. Navarro, M. C. Sanchez-Sanchez and
J. L. G. Fierro, Top. Catal., 2008, 49, 46–58.
19 S. Adhikari, S. Fernando and A. Haryanto, Catal. Today, 2007,
129, 355–364.
20 S. Li, C. Zhang, P. Zhang, G. Wu, X. Ma and J. Gong, Phys.
Chem. Chem. Phys., 2012, 14, 4066–4069.
21 J. G. Seo, M. H. Youn, S. Park, J. S. Chung and I. K. Song, Int.
J. Hydrogen Energy, 2009, 34, 3755–3763.
22 V. Chiodo, S. Freni, A. Galvagno, N. Mondello and
F. Frusteri, Appl. Catal., A, 2010, 381, 1–7.
23 I. N. Buffoni, F. Pompeo, G. F. Santori and N. N. Nichio,
Catal. Commun., 2009, 10, 1656–1660.
24 R. L. Manfro, N. F. P. Ribeiro and M. M. V. M. Souza, Catal.
Sustainable Energy Prod., 2012, 60–70, DOI: 10.2478/cse-2013-
0001.
Acknowledgements
Gullapelli Sadanandam thanks CSIR, New Delhi, for an SRF
grant, and the authors thank MNRE, New Delhi, for funding the
project.
25 G. Wu, C. Zhang, S. Li, Z. Han, T. Wang, X. Ma and J. Gong,
ACS
Sustainable
Chem.
Eng.,
2013,
1,
1052–
1062.
26 X. Wang, S. Li, H. Wang, B. Lu and X. Ma, Energy Fuels, 2008,
22, 4285–4291.
Notes and references
1 C. H. Zhou, J. N. Beltramini, Y. X. Fan and G. Q. Lu, Chem. 27 N. Luo, X. Zhao, F. Cao, T. Xiao and D. Fang, Energy Fuels,
Soc. Rev., 2008, 37, 527–549.
2007, 21, 3505–3512.
32436 | RSC Adv., 2014, 4, 32429–32437
This journal is © The Royal Society of Chemistry 2014