Journal of the American Chemical Society
Communication
highest catalytic activity (θ = 0.28), the measured activation
Notes
Bi
energy is not zero because of the contribution of other previous
steps and also from some Pt ensembles still accessible on the
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
surface. At 0.45 V, the measured activation energy for θ = 0.28
Bi
■
is 21 kJ/mol, whereas on the unmodified surface it is 42 kJ/
mol. From these data, the contribution of the different steps/
processes to the apparent activation energy at this bismuth
coverage can be estimated. Since each bismuth adatom blocks
three platinum sites, at the considered coverage, the number of
free Pt sites is 0.16. This implies that the contribution of these
sites to the total energy would be 0.16 × 42 = 6.7 kJ/mol. The
remaining 14.3 kJ/mol (or 0.15 eV) should arise, then, from the
previous steps for the reaction on the Bi−Pt ensemble,
probably from the deprotonation of the formic acid close to
the Bi adatom to give rise to formate, which will adsorb
immediately on the Bi adatom.
This work has been financially supported by the MINECO
(Spain) (project CTQ2013-44083-P) and Generalitat Valenci-
ana (project PROMETEOII/2014/013).
REFERENCES
■
(
1) Parsons, R.; Vandernoot, T. J. Electroanal. Chem. 1988, 257, 9.
(2) Koper, M. T. M.; Lai, S. C. S.; Herrero, E. In Fuel cell catalysis, a
surface science approach; Koper, M. T. M., Ed.; John Wiley & Sons,
Inc.: Hoboken, NJ, 2009; p 159.
(
3) Roychowdhury, C.; Matsumoto, F.; Zeldovich, V. B.; Warren, S.
C.; Mutolo, P. F.; Ballesteros, M.; Wiesner, U.; Abruna, H. D.; Disalvo,
F. J. Chem. Mater. 2006, 18, 3365.
4) Roychowdhury, C.; Matsumoto, F.; Mutolo, P. F.; Abruna, H. D.;
DiSalvo, F. J. Chem. Mater. 2005, 17, 5871.
5) Casado-Rivera, E.; Gal, Z.; Angelo, A. C. D.; Lind, C.; DiSalvo, F.
̃
(
Finally, it should be stressed that the reaction mechanism
suggested by our DFT calculations is in very good agreement
with a broad set of experimental data. First, unlike the Pt(111)
(
J.; Abruna, H. D. ChemPhysChem 2003, 4, 193.
12
electrodes, for which currents increase with the pH, the
(6) Blasini, D. R.; Rochefort, D.; Fachini, E.; Alden, L. R.; DiSalvo, F.
J.; Cabrera, C. R.; Abruna, H. D. Surf. Sci. 2006, 600, 2670.
(7) Feliu, J. M.; Herrero, E. In Handbook of fuel cellsfundamentals,
technology and applications; Vielstich, W., Gasteiger, H., Lamm, A.,
Eds.; John Wiley & Sons, Ltd.: Chichester, 2003; Vol. 2.
currents measured on the bismuth-modified Pt(111) electrodes
18
do not depend on the pH for values between 0 and 2, which
implies that the formic acid molecule is the reactant species at
these pH values. As has been shown, a formic acid molecule
(
8) Samjeske, G.; Miki, A.; Ye, S.; Osawa, M. J. Phys. Chem. B 2006,
10, 16559.
9) Chen, Y. X.; Ye, S.; Heinen, M.; Jusys, Z.; Osawa, M.; Behm, R. J.
J. Phys. Chem. B 2006, 110, 9534.
10) Cuesta, A.; Cabello, G.; Gutierrez, C.; Osawa, M. Phys. Chem.
close to the Bi adatom would have a lower pK , which would
a
1
(
facilitate its adsorption as formate on the bismuth adatom;
therefore, the presence of a formate molecule close to the
adatom is not required. Second, the activation energy
diminishes with the bismuth coverage. Third, the proposed
reaction mechanism helps to explain why the onset of the
reaction is between 0.2 and 0.3 V for the different bismuth
coverages. In the final step, adsorbed hydrogen is formed,
(
Chem. Phys. 2011, 13, 20091.
(11) Osawa, M.; Komatsu, K.; Samjeske, G.; Uchida, T.; Ikeshoji, T.;
Cuesta, A.; Gutierrez, C. Angew. Chem., Int. Ed. 2011, 50, 1159.
(12) Joo, J.; Uchida, T.; Cuesta, A.; Koper, M. T. M.; Osawa, M. J.
Am. Chem. Soc. 2013, 135, 9991.
“poisoning” the active site. In order to reactivate the active site,
(
13) Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Langmuir 2006,
2, 10399.
14) Grozovski, V.; Climent, V.; Herrero, E.; Feliu, J. M.
ChemPhysChem 2009, 10, 1922.
15) Grozovski, V.; Climent, V.; Herrero, E.; Feliu, J. M. Phys. Chem.
Chem. Phys. 2010, 12, 8822.
16) Clavilier, J.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J.
Electroanal. Chem. 1989, 258, 89.
(17) Herrero, E.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J.
Electroanal. Chem. 1993, 350, 73.
(18) Macia, M. D.; Herrero, E.; Feliu, J. M. J. Electroanal. Chem.
003, 554, 25.
hydrogen should be desorbed. Thus, a steady current for formic
acid oxidation is possible only at potentials at which hydrogen
is easily desorbed from the Pt sites, that is, where hydrogen
equilibrium coverage on the surface is low. On the unmodified
Pt(111) surface, hydrogen coverage is low above 0.30 V, and
this potential value diminishes as the bismuth coverage
increases (see Figure S4). Thus, the onset potential for the
reaction shifts accordingly. And, fourth, the proposed
mechanism also explain why the activation energy diminishes
from 0.2 to 0.5 V. Hydrogen desorption also contributes to the
measured activation energy, since it can be considered also the
first step in the reaction at potentials where hydrogen is
adsorbed. As the potential is made more positive, this step is
faster (i.e., with a lower activation energy), which results in a
diminution of the overall activation energy. As a conclusion, it
can be verified that the computational results presented here
are in very good agreement with a broad set of experimental
data, thus explaining them, which rigorously supports the
proposed reaction model.
2
(
(
(
́
́
́
2
(19) Kim, J.; Rhee, C. K. Electrochem. Commun. 2010, 12, 1731.
(20) Leiva, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Langmuir 1997,
1
(
3, 6287.
21) Grozovski, V.; Vidal-Iglesias, F. J.; Herrero, E.; Feliu, J. M.
ChemPhysChem 2011, 12, 1641.
22) Neurock, M.; Janik, M.; Wieckowski, A. Faraday Discuss. 2009,
(
140, 363.
(23) Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. J. Am. Chem. Soc. 2010,
132, 18377.
(
(
24) Wang, H.-F.; Liu, Z.-P. J. Phys. Chem. C 2009, 113, 17502.
25) Clavilier, J.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1988,
ASSOCIATED CONTENT
■
2
43, 419.
*
S
Supporting Information
(26) Climent, V.; Herrero, E.; Feliu, J. M. Electrochem. Commun.
Experimental details, computational methods, and additional
2001, 3, 590.
27) Peng, B.; Wang, H.-F.; Liu, Z.-P.; Cai, W.-B. J. Phys. Chem. C
010, 114, 3102.
(
2
AUTHOR INFORMATION
D
dx.doi.org/10.1021/ja505943h | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX