Paper
RSC Advances
valence band and results in a recombination of electrons and
holes which increases the layer resistance. It is described in the
specic cases of ethanol and acetone by the reaction as follows.
4 J. Sun, P. Sun, D. Zhang, J. Xu, X. Liang, F. Liu and G. Lu, RSC
Adv., 2014, 4, 43429–43435.
5 H. Song, T. Chen, X. Zhang and X. Jia, CrystEngComm, 2015,
17, 1173–1181.
6 M. Siemons, A. Leifert and U. Simon, Adv. Funct. Mater.,
2007, 17, 2189–2197.
7 H. Obayashi, Y. Sakurai and T. Gejo, J. Solid State Chem.,
1976, 17, 299–303.
8 X. Niu, W. Du and W. Du, Sens. Actuators, B, 2004, 99, 399–
404.
9 V. Lantto, S. Saukko, N. Toan, L. Reyes and C. Granqvist, J.
Electroceram., 2004, 13, 721–726.
10 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale,
B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom,
U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and
R. Ramesh, Science, 2003, 299, 1719–1722.
11 G. Catalan and J. F. Scott, Adv. Mater., 2009, 21, 2463–2485.
12 X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao and H. L. W. Chan, J.
Am. Ceram. Soc., 2009, 92, 3105–3107.
CH3CH2OH + 6Oads / 2CO2gas + 3H2Ogas + 6eꢂ
(5)
(6)
ꢂ
ꢂ
CH3COCH3 + 8Oads / 3CO2gas + 3H2Ogas + 8eꢂ
For BBFO10, the substitution of Bi3+ by Ba2+ increases the
oxygen vacancy concentration. The oxygen vacancies react with
the atmospheric oxygen to generate more holes and then make
the sample more conductive.30
0:5ðO2Þ þ Vcc 4Oꢁ þ 2h
(7)
c
gas
O
O
where VcOc, OꢁO, hc represent oxygen vacancy, lattice oxygen and
hole, respectively. In this case, more oxygen gas can combine
with these surface defects aer debonding the molecules, and
the conductance change in the Ba-substituted BFO is more
signicant compared to that of the pure BFO. Thus, the Ba-
substituted BFO sensor that has a signicantly better sensing
performance than pure BFO sensor is mainly due to the larger
quantity of oxygen vacancies.
´
13 M. Dziubaniuk, R. Bujakiewicz-Koronska, J. Suchanicz,
J. Wyrwa and M. R˛ekas, Sens. Actuators, B, 2013, 188, 957–
964.
14 A. Poghossian, H. Abovian, P. Avakian, S. Mkrtchian and
V. Haroutunian, Sens. Actuators, B, 1991, 4, 545–549.
15 H. Tian, H. Fan, H. Guo and N. Song, Sens. Actuators, B, 2014,
195, 132–139.
16 Y. Cai, H. Fan, M. Xu, Q. Li and C. Long, CrystEngComm,
2013, 15, 7339–7345.
17 J. Rodrigues-Carvajal, FULLPROF, a Rietveld renement and
pattern matching analysis program, Laboratoire Leon
Brillouin, CEA-CNRS, France, 2000.
18 L. Fang, J. Liu, S. Ju, F. Zheng, W. Dong and M. Shen, Appl.
Phys. Lett., 2010, 97, 242501–242503.
19 C. Rath, P. Mohanty, A. Pandey and N. Mishra, J. Phys. D:
Appl. Phys., 2009, 42, 205101.
20 M. Naeem, S. Hasanain, M. Kobayashi, Y. Ishida,
A. Fujimori, S. Buzby and S. I. Shah, Nanotechnology, 2006,
17, 2675.
4. Conclusions
In summary, the gas-sensing properties, conduction and gas-
sensing mechanism of Ba-substituted BFO sample are investi-
gated and compared with pure BFO. It is found that the
conduction of BBFO10 is dominated by p-type hole conduction.
The gas-sensing test revealed that the sensor based on the
BBFO10 sample exhibited a high sensitivity, quick response
time, effective sensitivity for different gases and excellent long-
time stability. It is proposed that the enhanced gas-sensing
properties of Ba-substituted BFO sample could be attributed
to the higher concentration of oxygen vacancy than pure BFO,
and the oxygen vacancy is induced by the substitution of Bi3+
ion by aliovalent Ba2+ ion at A-site of perovskite structure.
21 B. Ramachandran, A. Dixit, R. Naik, G. Lawes and M. R. Rao,
J. Appl. Phys., 2012, 111, 023910.
22 W. Eerenstein, F. Morrison, J. Dho, M. Blamire, J. Scott and
N. Mathur, Science, 2005, 307, 1203.
23 L. Huang and H. Fan, Sens. Actuators, B, 2012, 171, 1257–
1263.
24 H.-J. Kim and J.-H. Lee, Sens. Actuators, B, 2014, 192, 607–
627.
Acknowledgements
This work was supported by the National Natural Science
Foundation (51172187), the SPDRF (20116102130002,
20116102120016) and 111 Program (B08040) of MOE, the Xi'an
Science and Technology Foundation (CX12174, XBCL-1-08), the
Shaanxi Province Science Foundation (2013KW12-02), Aero-
nautical Science Foundation of China (2013ZF53072), the SKLP
Foundation (KP201421), and the Fundamental Research Funds
for the Central Universities (3102014JGY01004) of China.
´
25 N. Maso and A. R. West, Chem. Mater., 2012, 24, 2127–2132.
26 N. Khemiri, F. Chaffar Akkari, M. Kanzari and B. Rezig, Thin
Solid Films, 2008, 516, 7031–7035.
27 F. F. Vol'kenshteĭn, Electronic processes on semiconductor
surfaces during chemisorption, Plenum Pub Corp, 1991.
Notes and references
1 J. Xu, Q. Pan, Y. A. Shun and Z. Tian, Sens. Actuators, B, 2000, 28 S. Pokhrel, C. Simion, V. Quemener, N. Barsan and
66, 277–279. U. Weimar, Sens. Actuators, B, 2008, 133, 78–83.
2 J. Chen, L.-n. Xu, W.-y. Li and X.-l. Gou, Adv. Mater., 2005, 17, 29 J.-W. Yoon, J.-K. Choi and J.-H. Lee, Sens. Actuators, B, 2012,
582–586. 161, 570–577.
3 X. Xu, X. Li, W. Wang, B. Wang, P. Sun, Y. Sun and G. Lu, RSC 30 P. Knauth and H. L. Tuller, J. Am. Ceram. Soc., 2002, 85,
Adv., 2014, 4, 4831–4835.
1654–1680.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 29618–29623 | 29623