Communication
Dalton Transactions
tials for electrocatalytic CO oxidation by a Rh porphyrin, since
activation of a water molecule needs large overpotentials.
Veen, J. M. van der Eijk, Th. J. Peters and N. de Wit, Electro-
chim. Acta, 1982, 27, 1315–1319.
4
(a) S. Yamazaki, T. Ioroi, Y. Yamada, K. Yasuda and
T. Kobayashi, Angew. Chem., Int. Ed., 2006, 45, 3120–3122;
(
b) S. Yamazaki, Y. Yamada, S. Takeda, M. Goto, T. Ioroi,
Conclusions
Z. Siroma and K. Yasuda, Phys. Chem. Chem. Phys., 2010,
12, 8968–8976; (c) S. Yamazaki, M. Yao, S. Takeda,
Z. Siroma, T. Ioroi and K. Yasuda, Electrochem. Solid-State
Lett., 2011, 14, B23–B25; (d) S. Yamazaki, M. Yao,
Z. Siroma, T. Ioroi and K. Yasuda, J. Phys. Chem. C, 2010,
114, 21856–21860; (e) S. Yamazaki, M. Yao, N. Fujiwara,
Z. Siroma, T. Ioroi and K. Yasuda, J. Electroanal. Chem.,
2012, 668, 60–65.
III
We obtained [Rh (OEP)(CO)(Cl)] from the reaction of
III
[
Rh (OEP)(Cl)] with CO in a non-aqueous solvent (CH Cl ),
2 2
and analysed the CO-adduct by IR, NMR, and X-ray crystallo-
graphy. The results showed that back-donation from Rh to C is
relatively low among metalloporphyrin–CO complexes. This
suggests that CO on the Rh porphyrin easily undergoes nucleo-
philic attack by H
2
O. This property is correlated with the
(
electro)catalytic oxidation of CO by Rh porphyrins. Actually,
5 D. E. Hendriksen and R. Eisenberg, J. Am. Chem. Soc., 1976,
98, 4662–4664.
III
[Rh (OEP)(CO)(Cl)] reduced NQ, an electron acceptor, in
acetone-d containing water. Thus, CO is activated on a Rh
porphyrin for the oxidation by an electron acceptor.
6
6 J. C. Biffinger, S. Uppaluri, H. Sun and S. G. DiMagno, ACS
Catal., 2011, 1, 764–771.
Recently, studies on Rh porphyrins as a catalyst for the oxi-
7 C. Shi and F. C. Anson, Inorg. Chem., 2001, 40, 5829–5833.
8 (a) E. B. Fleischer, R. Thorp and D. Venerable, J. Chem. Soc.
D, 1969, 475; (b) I. A. Cohen and B. C. Chow, Inorg. Chem.,
1974, 13, 488–489.
1
4,22,23
dation of alcohols and sugars have been reported.
The
mechanistic analysis of CO oxidation in this work might shed
light on the analysis of these oxidation reactions.
9
J. P. Collman and R. Boulatov, Inorg. Chem., 2001, 40, 560–
63.
5
1
0 (a) D. C. Thackray, S. Ariel, T. W. Leung, K. Menon,
B. R. James and J. Trotter, Can. J. Chem., 1986, 64, 2440–
2446; (b) M. Hoshino and K. Yasufuku, Chem. Phys. Lett.,
1985, 14, 259–262; (c) M. Hoshino and K. Yasufuku, Inorg.
Chem., 1985, 24, 4408–4410.
Acknowledgements
We wish to thank Ms M. Ichimura, Ms M. Yoshioka, and Ms
S. Matsuyama for providing stellar technical assistance. We are
grateful to Dr T. Sugino (AIST), Dr S. Takeda (AIST), and
Dr S. Tanaka (AIST) for fruitful discussions. This study was 11 (a) X.-X. Zhang, G. F. Parks and B. B. Wayland, J. Am. Chem.
supported by the New Energy and Industrial Technology
Development Organization (NEDO) of Japan.
Soc., 1997, 119, 7938–7944; (b) A. E. Sherry and
B. B. Wayland, J. Am. Chem. Soc., 1989, 111, 5010–5012;
(c) B. B. Wayland, A. E. Sherry and A. G. Bunn, J. Am. Chem.
Soc., 1993, 115, 7675–7684; (d) B. B. Wayland, A. E. Sherry,
G. Poszmik and A. G. Bunn, J. Am. Chem. Soc., 1992, 114,
Notes and references
1673–1681.
1
(a) R. A. Lemons, J. Power Sources, 1990, 29, 251–264; 12 (a) H. Ogoshi, J. Setsune, T. Omura and Z. Yoshida, J. Am.
(
b) H. Igarashi, T. Fujino and M. Watanabe, J. Electroanal.
Chem. Soc., 1975, 97, 6461–6466; (b) H. Ogoshi, J. Setsune
and Z. Yoshida, J. Organomet. Chem., 1978, 159, 317–328;
(c) C.-L. Yao, J. E. Anderson and K. M. Kadish, Inorg.
Chem., 1987, 26, 2725–2727.
Chem., 1995, 391, 119; (c) M. Götz and H. Wendt, Electro-
chim. Acta, 1998, 43, 3637–3644.
(a) P. P. Lopes, K. S. Freitas and E. A. Ticianelli, Electrocata-
2
lysis, 2010, 1, 200–212; (b) J. N. Tiwari, R. N. Tiwari, 13 B. B. Wayland, A. Duttaahmed and B. A. Woods, J. Chem.
G. Singh and K. S. Kim, Nano Energy, 2013, 2, 553–578; Soc., Chem. Commun., 1983, 142–143.
c) S. M. M. Ehteshami and S. H. Chan, Electrochim. Acta, 14 S. Yamazaki, M. Yao, N. Fujiwara, Z. Siroma, K. Yasuda and
(
2
013, 93, 334–345; (d) T. Takeguchi, T. Yamanaka,
T. Ioroi, Chem. Commun., 2012, 48, 4353–4355.
K. Asakura, E. N. Muhamad, K. Uosaki and W. Ueda, J. Am. 15 B. B. Wayland, B. A. Woods and R. Pierce, J. Am. Chem.
Chem. Soc., 2012, 134, 14508–14512; (e) D. Takimoto, Soc., 1982, 104, 302–303.
T. Ohnishi and W. Sugimoto, ECS Electrochem. Lett., 2015, 16 (a) V. L. Coffin, W. Brennen and B. B. Wayland, J. Am.
4
,
F35–F37; (f) H. Uchida, K. Izumi, K. Aoki and
M. Watanabe, Phys. Chem. Chem. Phys., 2009, 11, 1771–
779; (g) M. Arenz, V. Stamenkovic, B. B. Blizanac,
Chem. Soc., 1988, 110, 6063–6069; (b) B. B. Wayland,
B. A. Wods and V. L. Coffin, Organometallics, 1986, 5, 1059–
1062.
1
K. J. Mayrhofer, N. M. Markovic and P. N. Ross, J. Catal., 17 (a) G. J. J. Steyn, A. Roodt, I. Poletaeva and Y. S. Varshavsky,
005, 232, 402–410; (h) T. Ioroi, K. Yasuda, Z. Siroma, J. Organomet. Chem., 1997, 536–537, 197–205;
2
N. Fujiwara and Y. Miyazaki, J. Electrochem. Soc., 2003, 150,
A1225–A1230.
(a) J. F. van Baar, J. A. R. van Veen and N. de Wit, Electro-
chim. Acta, 1982, 27, 57–59; (b) J. F. van Baar, J. A. R. van
(b) E. Rotondo, G. Battaglia, G. Giordano and
F. P. Cusmano, J. Organomet. Chem., 1993, 450, 245–252;
(c) B. T. Heaton, C. Jacob and J. T. Sampanthar, J. Chem.
Soc., Dalton Trans., 1998, 450, 1403–1410.
3
13826 | Dalton Trans., 2015, 44, 13823–13827
This journal is © The Royal Society of Chemistry 2015