14
S.A. Bakar, C. Ribeiro / Journal of Molecular Catalysis A: Chemical 421 (2016) 1–15
[20] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita,
Acknowledgment
et al., Sulfur-doping of rutile-titanium dioxide by ion implantation:
photocurrent spectroscopy and first-principles band calculation studies, J.
[21] W. Ho, J.C. Yu, S. Lee, Low-temperature hydrothermal synthesis of S-doped
TiO2 with visible light photocatalytic activity, J. Solid State Chem. 179 (2006)
[22] G. Yang, Z. Jiang, H. Shi, M.O. Jones, T. Xiao, P.P. Edwards, et al., Study on the
photocatalysis of F–S co-doped TiO2 prepared using solvothermal method,
[23] T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Visible light-Induced
degradation of methylene blue on S-doped TiO2, Chem. Lett. 32 (2003)
[24] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO2
photocatalyst under visible light, Chem. Lett. 32 (2003) 364–365, http://dx.
The authors like to thank, post-graduate program by TWAS-
CNPq for financial support to this project. The authors also like to
thank, Brazilian Nanotechnology National Laboratory LNNano for
XPS analysis and LIEC lab for HR-TEM analysis.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[25] L.K. Randeniya, A.B. Murphy, I.C. Plumb, A study of S-doped TiO2 for
photoelectrochemical hydrogen generation from water, J. Mater. Sci. 43
[26] C. Ribeiro, C.M. Barrado, E.R. de Camargo, E. Longo, E.R. Leite, Phase
transformation in titania nanocrystals by the oriented attachment
mechanism: the role of the pH value, Chemistry 15 (2009) 2217–2222, http://
References
[1] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic
materials: possibilities and challenges, Adv. Mater. 24 (2012) 229–251, http://
[27] S. Abu Bakar, C. Ribeiro, An insight toward the photocatalytic activity of S
doped 1-D TiO2 nanorods prepared via novel route: as promising platform for
environmental leap, J. Mol. Catal. A Chem. 412 (2016) 78–92, http://dx.doi.
[28] E.R. Camargo, M. Kakihana, Peroxide-based route free from halides for the
synthesis of lead titanate powder, Chem. Mater. 13 (2001) 1181–1184, http://
[2] A. Kubacka, M. Fernández-García, G. Colón, Advanced nanoarchitectures for
solar photocatalytic applications, Chem. Rev. 112 (2012) 1555–1614, http://
[3] S.K. Das, M.K. Bhunia, A. Bhaumik, Self-assembled TiO2 nanoparticles:
mesoporosity, optical and catalytic properties, Dalton Trans. 39 (2010) 4382,
[4] S. Chattopadhyay, M.K. Mishra, G. De, Functionalized C@TiO2 hollow spherical
architectures for multifunctional applications, Dalton Trans. (2016), http://dx.
[30] C.W. Dunnill, Z.A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D.J. Morgan, et al.,
White light induced photocatalytic activity of sulfur-doped TiO2 thin films
and their potential for antibacterial application, J. Mater. Chem. 19 (2009)
[31] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium
[32] Z. Topalian, J.M. Smulko, G.A. Niklasson, C.G. Granqvist, Resistance noise in
TiO2-based thin film gas sensors under ultraviolet irradiation, J. Phys. Conf.
[33] D.B. Hamal, K.J. Klabunde, Synthesis, characterization, and visible light
activity of new nanoparticle photocatalysts based on silver, carbon, and
sulfur-doped TiO2, J. Colloid Interface Sci. 311 (2007) 514–522, http://dx.doi.
[34] B. Jiang, P. Zhang, Y. Zhang, L. Wu, H. Li, D. Zhang, et al., Self-assembled 3D
architectures of Bi2TiO4F2 as a new durable visible-light photocatalyst,
[35] W. Li, D. Li, J. Wang, Y. Shao, J. You, F. Teng, Exploration of the active species in
the photocatalytic degradation of methyl orange under UV light irradiation, J.
[5] A. Rachel, M. Subrahmanyam, P. Boule, Comparison of photocatalytic
efficiencies of TiO2 in suspended and immobilised form for the photocatalytic
degradation of nitrobenzenesulfonic acids, Appl. Catal. B Environ. 37 (2002)
[6] Y. Yan, D. Wang, P. Schaaf, Fabrication of N-doped TiO2 coatings on
nanoporous Si nanopillar arrays through biomimetic layer by layer
[7] Y. Zhang, Z.-A. Qiao, J. Liu, X. Wang, S. Yao, T. Wang, et al., Ti(iv) oxalate
complex-derived hierarchical hollow TiO2 materials with dye degradation
[8] A. Wang, H. Jing, Tunable catalytic activities and selectivities of metal ion
doped TiO2 nanoparticles—oxidation of organic compounds, Dalton Trans. 43
[9] W. Xu, P.K. Jain, B.J. Beberwyck, A.P. Alivisatos, Probing redox photocatalysis
of trapped electrons and holes on single Sb-doped titania nanorod surfaces, J.
[10] W. Fu, S. Ding, Y. Wang, L. Wu, D. Zhang, Z. Pan, et al., F, Ca co-doped TiO 2
nanocrystals with enhanced photocatalytic activity, Dalton Trans. 43 (2014)
[36] J. Sun, X. Yan, K. Lv, S. Sun, K. Deng, D. Du, Photocatalytic degradation pathway
for azo dye in TiO2/UV/O3 system: hydroxyl radical versus hole, J. Mol. Catal.
[37] C. Shifu, J. Lei, T. Wenming, F. Xianliang, Fabrication, characterization and
mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced
[38] A. Durán, J.M. Monteagudo, I. Sanmartín, A. García-Díaz, Sonophotocatalytic
mineralization of antipyrine in aqueous solution, Appl. Catal. B Environ.
[39] H. Kisch, W. Macyk, Visible-light photocatalysis by modified titania,
[11] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold
nanocomposites. Effect of metal particle size on the fermi level equilibration, J.
[12] J. Saha, A. Mitra, A. Dandapat, G. De, TiO2 nanoparticles doped SiO2 films with
ordered mesopore channels: a catalytic nanoreactor, Dalton Trans. 43 (2014)
[13] W. Smith, A. Wolcott, R.C. Fitzmorris, J.Z. Zhang, Y. Zhao, Quasi-core-shell
TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle
deposition for solar water splitting, J. Mater. Chem. 21 (2011) 10792, http://
[14] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis
in nitrogen-doped titanium oxides, Science 293 (2001) 269–271, http://dx.
[40] J.C. Yu, W. Ho, J. Yu, H. Yip, P.K. Wong, J. Zhao, Efficient visible-light-induced
photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ.
[41] S. Abu Bakar, C. Ribeiro, Rapid and morphology controlled synthesis of anionic
S-doped TiO2 photocatalysts for visible-light-driven photodegradation of
[42] M. Harb, P. Sautet, P. Raybaud, Anionic or cationic S-doping in bulk anatase
TiO2: insights on optical absorption from first principles calculations, J. Phys.
[43] T. Okato, T. Sakano, M. Obara, Suppression of photocatalytic efficiency in
highly N-doped anatase films, Phys. Rev. B 72 (2005) 115124, http://dx.doi.
[44] F.-D. Duminica, F. Maury, R. Hausbrand, N-doped TiO2 coatings grown by
atmospheric pressure MOCVD for visible light-induced photocatalytic
[45] S.A. O’Neill, I.P. Parkin, R.J.H. Clark, A. Mills, N. Elliott, Atmospheric pressure
chemical vapour deposition of titanium dioxide coatings on glass, J. Mater.
[15] H. Liu, A. Imanishi, Y. Nakato, Mechanisms for photooxidation reactions of
water and organic compounds on carbon-doped titanium dioxide, as studied
by photocurrent measurements, J. Phys. Chem. C 111 (2007) 8603–8610,
[16] J. Wang, C. Fan, Z. Ren, X. Fu, G. Qian, Z. Wang, N-doped TiO2/C
nanocomposites and N-doped TiO 2 synthesised at different thermal
treatment temperatures with the same hydrothermal precursor, Dalton
[17] E.M. Rockafellow, L.K. Stewart, W.S. Jenks, Is sulfur-doped TiO2 an effective
visible light photocatalyst for remediation? Appl. Catal. B Environ. 91 (2009)
[18] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura,
Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities
[19] T. Sano, N. Mera, Y. Kanai, C. Nishimoto, S. Tsutsui, T. Hirakawa, et al., Origin of
visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S
atoms in a wet N-doping process, Appl. Catal. B Environ. 128 (2012) 77–83,