10.1002/cphc.201701046
ChemPhysChem
ARTICLE
Methane over Cu-Promoted Fe-ZSM-5, Chemistry – A European Journal,
[50] H. Dang Lanh, D. Thi Thuy Hanh, J. Engeldinger, M. Schneider, J. Radnik,
M. Richter, A. Martin, TPR investigations on the reducibility of Cu
supported on Al2O3, zeolite Y and SAPO-5, Journal of Solid State
Chemistry, 184 (2011) 1915-1923.
18 (2012) 15735-15745.
[32] V. Peneau, G. Shaw, R.D. Armstrong, R.L. Jenkins, N. Dimitratos, S.H.
Taylor, H.W. Zanthoff, S. Peitz, G. Stochniol, G.J. Hutchings, The partial
oxidation of propane under mild aqueous conditions with H2O2 and ZSM-
5 catalysts, Catalysis Science & Technology, (2016).
[51] C. Ding, X. Wang, X. Guo, S. Zhang, Characterization and catalytic
alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite
catalyst, Catal. Commun., 9 (2007) 487-493.
[33] H. Borchert, U. Dingerdissen, J. Weiguny, Process and palladium-
containing catalyst for the selective production of acetic acid by the gas-
phase oxidation of ethane and/or ethylene, in, Hoechst A.-G., Germany .
1997, pp. 6 pp.
[52] R.Q. Long, R.T. Yang, Temperature-programmed desorption/surface
reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective
catalytic reduction of nitric oxide by ammonia, Journal of Catalysis, 198
(2001) 20-28.
[34] K.-I. Sano, H. Uchida, S. Wakabayashi, A new process for acetic acid
production by direct oxidation of ethylene, Catal. Surv. Jpn., 3 (1999) 55-
60.
[53] M. Iwasaki, K. Yamazaki, K. Banno, H. Shinjoh, Characterization of
Fe/ZSM-5 DeNOx catalysts prepared by different methods:
Relationships between active Fe sites and NH3-SCR performance, J.
Catal., 260 (2008) 205-216.
[35] B. Wichterlova, J. Dedecek, Z. Sobalik, A. Vondrova, K. Klier, On the Cu
site in ZSM-5 active in decomposition of NO: Luminescence, FTIR study,
and redox properties, Journal of Catalysis, 169 (1997) 194-202.
[36] B. Wichterlová, Z. Sobalík, J. Dědeček, Cu ion siting in high silica zeolites.
Spectroscopy and redox properties, Catalysis Today, 38 (1997) 199-203.
[37] B. Wichterlova, Z. Sobalik, A. Vondrova, Differences in the structure of
copper active sites for decomposition and selective reduction of nitric
oxide with hydrocarbons and ammonia, Catalysis Today, 29 (1996) 149-
153.
[54] B. Dou, G. Lv, C. Wang, Q. Hao, K. Hui, Cerium doped copper/ZSM-5
catalysts used for the selective catalytic reduction of nitrogen oxide with
ammonia, Chemical Engineering Journal, 270 (2015) 549-556.
[55] F.W. Schuetze, F. Roessner, J. Meusinger, H. Papp, Hydrogen/deuterium
exchange on dealuminated H-ZSM-5 zeolites studied by time resolved
FTIR spectroscopy, Stud. Surf. Sci. Catal., 112 (1997) 127-134.
[56] B.J. Adelman, T. Beutel, G.D. Lei, W.M.H. Sachtler, Mechanistic Cause of
Hydrocarbon Specificity over Cu/ZSM-5 and Co/ZSM-5 Catalysts in the
Selective Catalytic Reduction of NOx, Journal of Catalysis, 158 (1996)
327-335.
[38] A.N. Pham, G. Xing, C.J. Miller, T.D. Waite, Fenton-like copper redox
chemistry revisited: Hydrogen peroxide and superoxide mediation of
copper-catalyzed oxidant production, Journal of Catalysis, 301 (2013)
54-64.
[57] M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya, S. Kagawa,
Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for
direct and continuous decomposition of nitrogen monoxide, J. Chem.
Soc., Chem. Commun., (1986) 1272-1273.
[39] J.K. Kim, I.S. Metcalfe, Investigation of the generation of hydroxyl radicals
and their oxidative role in the presence of heterogeneous copper
catalysts, Chemosphere, 69 (2007) 689-696.
[40] E.A. Urquieta-González, L. Martins, R.P.S. Peguin, M.S. Batista,
Identification of Extra-Framework Species on Fe/ZSM-5 and Cu/ZSM-5
Catalysts Typical Microporous Molecular Sieves with Zeolitic Structure,
Materials Research, 5 (2002) 321-327.
[58] R. Burch, S. Scire, Selective catalytic reduction of nitric oxide with ethane
and methane on some metal exchanged ZSM-5 zeolites, Appl. Catal., B,
3 (1994) 295-318.
[59] B. Wichterlova, J. Dedecek, Z. Sobalik, Cu coordination in high silica
zeolites. Effect of the framework Al local siting, Elsevier Science Publ B
V, Amsterdam, 1995.
[41] C. TorreAbreu, M.F. Ribeiro, C. Henriques, G. Delahay, Characterisation of
CuMFI catalysts by temperature programmed desorption of NO and
temperature programmed reduction. Effect of the zeolite Si/Al ratio and
copper loading, Applied Catalysis B-Environmental, 12 (1997) 249-262.
[42] J.A. Sullivan, J. Cunningham, M.A. Morris, K. Keneavey, Conditions in
which Cu-ZSM-5 outperforms supported vanadia catalysts in SCR of
NOx by NH3, Applied Catalysis B-Environmental, 7 (1995) 137-151.
[43] G. Delahay, B. Coq, L. Broussous, Selective catalytic reduction of nitrogen
monoxide by decane on copper-exchanged beta zeolites, Appl. Catal., B,
12 (1997) 49-59.
[60] I. Othman Ali, Preparation and characterization of copper nanoparticles
encapsulated inside ZSM-5 zeolite and NO adsorption, Materials
Science and Engineering: A, 459 (2007) 294-302.
[61] Y. Kuroda, R. Kumashiro, T. Yoshimoto, M. Nagao, Characterization of
active sites on copper ion-exchanged ZSM-5-type zeolite for NO
decomposition reaction, Physical Chemistry Chemical Physics, 1 (1999)
649-656.
[62] J. Dedecek, Z. Sobalik, Z. Tvaruazkova, D. Kaucky, B. Wichterlova,
Coordination of Cu Ions in High-Silica Zeolite Matrixes. Cu+
Photoluminescence, IR of NO Adsorbed on Cu2+, and Cu2+ ESR Study,
The Journal of Physical Chemistry, 99 (1995) 16327-16337.
[63] N. Beznis, B. Weckhuysen, J. Bitter, Cu-ZSM-5 Zeolites for the Formation
of Methanol from Methane and Oxygen: Probing the Active Sites and
Spectator Species, Catalysis Letters, 138 (2010) 14-22.
[44] R. Bulanek, B. Wichterlova, Z. Sobalik, J. Tichy, Reducibility and oxidation
activity of Cu ions in zeolites - Effect of Cu ion coordination and zeolite
framework composition, Applied Catalysis B-Environmental, 31 (2001)
13-25.
[45] C. Dossi, A. Fusi, S. Recchia, R. Psaro, G. Moretti, Cu–ZSM-5 (Si/Al=66),
Cu–Fe–S-1 (Si/Fe=66) and Cu–S-1 catalysts for NO decomposition:
preparation, analytical characterization and catalytic activity,
Microporous and Mesoporous Materials, 30 (1999) 165-175.
[46] C. Torre-Abreu, M.E. Ribeiro, C. Henriques, G. Delahay, NO TPD and H-
2-TPR studies for characterisation of CuMOR catalysts the role of Si/Al
ratio, copper content and cocation, Applied Catalysis B-Environmental,
14 (1997) 261-272.
[64] R. Kefirov, A. Penkova, K. Hadjiivanov, S. Dzwigaj, M. Che, Stabilization of
Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO
and TPR, Microporous and Mesoporous Materials, 116 (2008) 180-187.
[65] J. Dedecek, L. Capek, P. Sazama, Z. Sobalik, B. Wichterlova, Control of
metal ion species in zeolites by distribution of aluminium in the
framework: From structural analysis to performance under real
conditions of SCR-NOx and NO, N2O decomposition, Appl. Catal., A,
391 (2011) 244-253.
[47] T. Beutel, J. Sarkany, G.D. Lei, J.Y. Yan, W.M.H. Sachtler, Redox
Chemistry of Cu/ZSM-5, J. Phys. Chem., 100 (1996) 845-851.
[48] B. Hunger, J. Hoffmann, O. Heitzsch, M. Hunger, Temperature-
programmed desorption (TPD) of ammonia from HZSM-5 zeolites, J.
Therm. Anal., 36 (1990) 1379-1391.
[66] S.C. Larsen, A. Aylor, A.T. Bell, J.A. Reimer, Electron Paramagnetic
Resonance Studies of Copper Ion-Exchanged ZSM-5, J. Phys. Chem.,
98 (1994) 11533-11540.
[49] K.H. Schnabel, C. Peuker, B. Parlitz, E. Loffler, U. Kurschner, H.
Kriegsmann, IR- spectroscopic investigation of the adsorption of NH3 and
H2O to Na-ZSM-5 and H-ZSM-5, Zeitschrift Fur Physikalische Chemie-
Leipzig, 268 (1987) 225-234.
[67] T. Kawai, K. Tsutsumi, Evaluation of hydrophilic-hydrophobic character of
zeolites by measurements of their immersional heats in water, Colloid
Polym. Sci., 270 (1992) 711-715.
[68] S.M. Auerbach, K.A. Currado, P.K. Dutta, Handbook of Zeolites Science
and Technology, Marcel Dekker Inc, New York, 2003.
This article is protected by copyright. All rights reserved.