10.1002/cctc.201801824
ChemCatChem
FULL PAPER
600 °C for 1 h; the reactor was then purged with a stream of He
for 1 h and cooled to 100 °C. After 5% H2O in He gas (flow rate,
30 mL min−1) was fed to the catalyst for 30 min at 100 °C, the oven
temperature was increased at 10 °C min−1 to 800 °C. The H2O
and H2 desorption profiles were monitored by quadrupole MS at
m/z 18 and m/z 2, respectively.
[11] A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. J.
Li, K. P. Chen, Sci. Rep. 2017, 7, 9360.
[12] P. Arunkumar, R. Ramaseshan, S. Dash, K. S. Babu, Sci. Rep. 2017, 7,
3450.
[13] Q. Zhang, X. Du, S. Tan, D. Tang, K. Chen, T. Zhang, Sci. Rep. 2017, 7,
5355.
The formation of the carbonaceous deposits was quantified by
temperature-programmed oxidation of the used catalyst. Used
catalyst (50 mg) was placed in a quartz reactor, and the reactor
was heated from room temperature to 1000 °C at a rate of 10 °C
min−1 under a flow of O2/Ar gas (5 vol%; flow rate, 28.5 mL min−1).
The effluents were analyzed by GC with flame ionization detection.
X-ray absorption fine structure measurements for the Rh K-
edges were performed on the BL01B1 beamline at SPring-8. A Si
(311) two-crystal monochromator was used for the
measurements of absorption edges. After being reduced under a
flow of pure H2 at 600 °C for 1 h, the samples were cooled in Ar,
recovered from the tubular reactor, and encapsulated in plastic
bags filled with Ar. All the procedures for recovery and transfer of
the samples to the plastic bags were carried out under Ar to avoid
altering the samples through air exposure. The plastic bags were
transferred to the beamline and spectra of the catalyst disks were
measured. Measurements of the Rh K-edge were carried out in
transmittance mode with two ion chambers. The X-ray energy was
calibrated against the spectra of standard Rh foils. Data analysis
was performed with the Athena and Artemis programs (ver.
0.9.25) included in the Demeter package. [47]
[14] N. Minh, Solid State Ionics 2004, 174, 271-277.
[15] V. Eveloy, W. Karunkeyoon, P. Rodgers, A. Al Alili, Int. J. Hydrogen
Energy 2016, 41, 13843-13858.
[16] M. Cimenti, J. Hill, Energies 2009, 2, 377-410.
[17] T. H. Santos, J. P. F. Grilo, F. J. A. Loureiro, D. P. Fagg, F. C. Fonseca,
D. A. Macedo, Ceram. Int. 2018, 44, 2745-2751.
[18] C. Duan, D. Hook, Y. Chen, J. Tong, R. O'Hayre, Energy Environ. Sci.
2017, 10, 176-182.
[19] T. Fukui, Nanoparticle Technology Handbook (Third Edition) 2018, 499-
503.
[20] E. D. Wachsman, K. T. Lee, Science 2011, 334, 935-939.
[21] Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, S. A. Barnett, Energy
Environ. Sci. 2016, 9, 1602-1644.
[22] C. Xia, Solid State Ionics 2002, 149, 11-19.
[23] X. Zhang, M. Robertson, C. Deĉes-Petit, W. Qu, O. Kesler, R. Maric, D.
Ghosh, J. Power Sources 2007, 164, 668-677.
[24] L. Li, X. Wang, K. Shen, X. Zou, X. Lu, W. Ding, Chin. J. Catal. 2010, 31,
525-527.
[25] H. Jeong, M. Kang, Appl. Catal., B 2010, 95, 446-455.
[26] Y. Lu, J. Chen, Y. Liu, Q. Xue, M. He, J. Catal. 2008, 254, 39-48.
[27] L. Yu, K. Sato, T. Toriyama, T. Yamamoto, S. Matsumura, K. Nagaoka,
Chemistry — Eur. J. 2018, 24, 8742-8746.
[28] K. Shen, X. Wang, X. Zou, X. Wang, X. Lu, W. Ding, Int. J. Hydrogen
Energy 2011, 36, 4908-4916.
Acknowledgements
[29] M. Krumpelt, Catal. Today 2002, 77, 3-16.
[30] K. Nagaoka, K. Sato, H. Nishiguchi, Y. Takita, Catal. Commun. 2007, 8,
1807-1810.
The X-ray absorption experiments were performed with the
approval of the Japan Synchrotron Radiation Research Institute
(JASRI) (Proposal Nos. 2015A1534, 2018B1711).This work was
partly supported by the ACCEL, Japan Science and Technology
Agency (grant number JPMJAC1501). K.S. thanks the Program
for Elements Strategy Initiative for Catalysts & Batteries (ESICB)
commissioned by MEXT. This work was supported by JSPS
KAKENHI Grant Number 15H04188.
[31] K. Nagaoka, K. Sato, H. Nishiguchi, Y. Takita, Appl. Catal., A 2007, 327,
139-146.
[32] J. R. Rostrup-Nielsen, J. Sehested, J. K. Nørskov, Adv. Catal. 2002, 47,
65-139.
[33] P. Ferreira‐Aparicio, M. J. Benito, J. L. Sanz, Catal. Rev. 2005, 47, 491-
588.
[34] A. Qi, S. Wang, C. Ni, D. Wu, Int. J. Hydrogen Energy 2007, 32, 981-991.
[35] M. Ferrandon, T. Krause, Appl. Catal., A 2006, 311, 135-145.
[36] S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka, K.
Eguchi, Appl. Catal., A 2003, 241, 261-269.
Keywords: redox • steam reforming • heterogeneous catalysis •
reaction mechanism • low temperature
[37] P. Alphonse, F. Ansart, J. Colloid Interface Sci. 2009, 336, 658-666.
[38] K. Sato, K. Adachi, Y. Takita, K. Nagaoka, ChemCatChem 2014, 6, 784-
789.
[1]
[2]
[3]
S. Choi, C. J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S. M.
Haile, Nat. Energy 2018, 3, 202-210.
C. Li, Q. Yuan, B. Ni, T. He, S. Zhang, Y. Long, L. Gu, X. Wang, Nat.
Commun. 2018, 9, 3702.
[39] H. C. Yao, Y. F. Yu Yao, J. Catal. 1984, 86, 254-265.
[40] S. R. Gomes, N. Bion, D. Duprez, F. Epron, Appl. Catal., B 2016, 197,
138-145.
W. Zheng, L. Wang, F. Deng, S. A. Giles, A. K. Prasad, S. G. Advani, Y.
Yan, D. G. Vlachos, Nat. Commun. 2017, 8, 418.
M. Schrope, Nature 2001, 414, 682-684.
[41] P. Fornasiero, R. Dimonte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli,
M. Graziani, J. Catal. 1995, 151, 168-177.
[4]
[5]
[6]
D. L. Trimm, Z. I. Önsan, Catal. Rev. 2001, 43, 31-84.
K. Takehira, T. Shishido, P. Wang, T. Kosaka, K. Takaki, J. Catal. 2004,
221, 43-54.
[42] K. Otsuka, Y. Wang, M. Nakamura, Appl. Catal., A 1999, 183, 317-324.
[43] K. Sato, K. Kawano, A. Ito, Y. Takita, K. Nagaoka, ChemSusChem 2010,
3, 1364-1366.
[7]
[8]
Y. Li, X. Wang, C. Xie, C. Song, Appl. Catal., A 2009, 357, 213-222.
X. Zou, X. Wang, L. Li, K. Shen, X. Lu, W. Ding, Int. J. Hydrogen Energy
2010, 35, 12191-12200.
[44] T. R. Phillips, J. Mulhall, G. E. Turner, J. Catal. 1969, 15, 233-244.
[45] K. S. M. Bhatta, G. M. Dixon, Ind. Eng. Chem. Prod. Res. Dev. 1969, 8,
324-331.
[9]
M. C. Steil, S. D. Nobrega, S. Georges, P. Gelin, S. Uhlenbruck, F. C.
Fonseca, Appl. Energy 2017, 199, 180-186.
[46] J. R. Rostrup-Nielsen, J. Catal. 1973, 31, 173-199.
[47] B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537-541.
[10] C. Duan, R. J. Kee, H. Zhu, C. Karakaya, Y. Chen, S. Ricote, A. Jarry, E.
J. Crumlin, D. Hook, R. Braun, N. P. Sullivan, R. O'Hayre, Nature 2018,
557, 217-222.
This article is protected by copyright. All rights reserved.