10.1002/cctc.201901002
ChemCatChem
FULL PAPER
[43]
J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, ACS
Ertl, H. Knözinger, F. Schüth, J. Weitkamp), Wiley‐VCH Verlag
GmbH & Co. KGaA, Online, 2008, pp. 738–765.
D. Neagu, T. S. Oh, D. N. Miller, H. Ménard, S. M. Bukhari, S. R.
Gamble, R. J. Gorte, J. M. Vohs, J. T. S. Irvine, Nat. Commun.
2015, 6, 1–8.
Catal. 2014, 4, 2917–2940.
[44]
[45]
I. K. Suh, H. Ohta, Y. Waseda, J. Mater. Sci. 1988, 23, 757–760.
T. Broux, C. Prestipino, M. Bahout, O. Hernandez, D. Swain, S.
Paofai, T. C. Hansen, C. Greaves, Chem. Mater. 2013, 25, 4053–
4063.
[71]
[72]
[73]
[74]
T. W. Hansen, A. T. Delariva, S. R. Challa, A. K. Datye, Acc. Chem.
Res. 2013, 46, 1720–1730.
[46]
C. Munnings, S. Skinner, G. Amow, P. Whitfield, I. Davidson, Solid
State Ionics 2006, 177, 1849–1853.
J. Lif, M. Skoglundh, L. Löwendahl, Appl. Catal. A Gen. 2002, 228,
145–154.
[47]
[48]
[49]
R. K. Li, C. Greaves, J. Solid State Chem. 2000, 153, 34–40.
Y. Wang, K. Shih, X. Jiang, Ceram. Int. 2012, 38, 1879–1886.
D. Senff, P. Reutler, M. Braden, O. Friedt, D. Bruns, A. Cousson, F.
Bourée, M. Merz, B. Büchner, A. Revcolevschi, Phys. Rev. B -
Condens. Matter Mater. Phys. 2005, 71, 024425(1)-024425(8).
S. Larochelle, A. Mehta, L. Lu, P. K. Mang, O. P. Vajk, N. Kaneko,
J. W. Lynn, L. Zhou, M. Greven, Phys. Rev. B 2005, 71, 024435(1)-
024435(18).
F. N. Agüero, A. M. Beltrán, M. A. Fernández, L. E. Cadús, J. Solid
State Chem. 2019, 273, 75–80.
[75]
[76]
[77]
R. T. K. Baker, J. Catal. 1982, 78, 473–476.
S. E. Wanke, P. C. Flynn, Catal. Rev. Sci. Eng. 1975, 12, 93–135.
G. Palasantzas, T. Vystavel, S. A. Koch, J. T. M. De Hosson, J.
Appl. Phys. 2006, 99, 024307(1)-024307(5).
[50]
[78]
[79]
[80]
[81]
[82]
[83]
M. A. Asoro, P. J. Ferreira, D. Kovar, Acta Mater. 2014, 81, 173–
183.
[51]
[52]
M. Bieringer, J. E. Greedan, J. Mater. Chem. 2002, 12, 279–287.
H. J. Kitchen, I. Saratovsky, M. A. Hayward, Dalt. Trans. 2010, 39,
6098–6105.
Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang, X. Cheng, Y. Li, L.
Gu, K. Świerczek, ACS Nano 2016, 10, 8660–8669.
D. Papargyriou, J. T. S. Irvine, Solid State Ionics 2016, 288, 120–
123.
[53]
J. Bandyopadhyay, K. P. Gupta, Cryogenics (Guildf). 1977, 17,
345–347.
[54]
[55]
[56]
K. Y. Lai, A. Manthiram, Chem. Mater. 2018, 30, 2838–2847.
G. Blasse, J. Inorg. Nucl. Chem. 1965, 27, 2683–2684.
Y. Moritomo, Y. Tomioka, A. Asamitsu, Y. Tokura, Phys. Rev. B
1995, 51, 3297–3301.
P. Vernoux, J. Guindet, M. Kleitz, J. Electrochem. Soc. 1998, 145,
3487–3492.
K. Girona, S. Sailler, P. Gélin, N. Bailly, S. Georges, Y. Bultel, Can.
J. Chem. Eng. 2015, 93, 285–296.
[57]
[58]
[59]
P. Ganguly, C. N. R. Rao, J. Solid State Chem. 1984, 53, 193–216.
A. Benabad, A. Daoudi, J. Solid State Chem. 1977, 22, 121–126.
W. B. Wu, D. J. Huang, G. Y. Guo, H. J. Lin, T. Y. Hou, C. F.
Chang, C. T. Chen, A. Fujimori, T. Kimura, H. B. Huang, et al., J.
Electron Spectros. Relat. Phenomena 2004, 137–140, 641–645.
V. M. Gonzalez-DelaCruz, J. P. Holgado, R. Pereñíguez, A.
Caballero, J. Catal. 2008, 257, 307–314.
W. K. B. W. Ramli, Exsolved Base Metal Catalyst Systems with
Anchored Nanoparticles for Carbon Monoxide (CO) and Nitric
Oxides (NOx) Oxidation, Newcastle University, 2017.
N. Laosiripojana, S. Assabumrungrat, J. Power Sources 2007, 163,
943–951.
[84]
[85]
[60]
[61]
[62]
[63]
[64]
V. Sadykov, N. Mezentseva, G. Alikina, R. Bunina, V. Pelipenko, A.
Lukashevich, S. Tikhov, V. Usoltsev, Z. Vostrikov, O. Bobrenok, et
al., Catal. Today 2009, 146, 132–140.
O. Dulub, W. Hebenstreit, U. Diebold, Phys. Rev. Lett. 2000, 84,
3646–3649.
[86]
A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M.
Mogensen, S. C. Singhal, J. Vohs, Nat. Mater. 2004, 3, 17–27.
A. . L. Dicks, J. Power Sources 1998, 71, 111–122.
P. S. Roy, N. K. Park, K. Kim, Int. J. Hydrogen Energy 2014, 39,
4299–4310.
T. Wei, L. Jia, H. Zheng, B. Chi, J. Pu, J. Li, Appl. Catal. A Gen.
2018, 564, 199–207.
[87]
[88]
A. Adamson, A. Gat, Physical Chemistry of Surfaces, John Wiley &
Sons, Inc., New York, 1997.
T. S. Oh, E. K. Rahani, D. Neagu, J. T. S. Irvine, V. B. Shenoy, R. J.
Gorte, J. M. Vohs, J. Phys. Chem. Lett. 2015, 6, 5106–5110.
M. Blander, J. L. Katz, AIChE J. 1975, 21, 833–848.
C. L. Kelchner, S. Plimpton, Phys. Rev. B - Condens. Matter Mater.
Phys. 1998, 58, 11085–11088.
[89]
[90]
G. Postole, F. Bosselet, G. Bergeret, S. Prakash, P. Gélin, J. Catal.
2014, 316, 149–163.
[65]
[66]
S. K. Cheah, L. Massin, M. Aouine, M. C. Steil, J. Fouletier, P.
Gélin, Appl. Catal. B Environ. 2018, 234, 279–289.
C. H. Bartholomew, Catal. Rev. Sci. Eng. 1982, 24, 67–112.
M. P. Pechini, Method of Preparing Lead and Alkaline Earth
Titanates and Niobates and Coating Method Using the Same to
Form a Capacitor, 1967, US3330697A.
[91]
[92]
[67]
D. Neagu, G. Tsekouras, D. N. Miller, H. Ménard, J. T. S. Irvine,
Nat. Chem. 2013, 5, 916–923.
[68]
[69]
O. G. Raabe, J. Aerosol Sci. 1971, 2, 289–303.
B. R. Pauw, C. Kästner, A. F. Thünemann, J. Appl. Crystallogr.
2017, 50, 1280–1288.
[93]
V. Petrícek, M. Dušek, L. Palatinus, Zeitschrift fur Krist. 2014, 229,
345–352.
[70]
G. Bergeret, P. Gallezot, in Handb. Heterog. Catal. Online (Eds.: G.
This article is protected by copyright. All rights reserved.