10.1002/cctc.201902273
ChemCatChem
FULL PAPER
The selectivity of the individual product (hydrocarbon or oxygenate) CnHm
(CO2-free) was obtained according to eq 5:
[11] Y. Liu, J. F. Chen, J. Bao, Y. Zhang, ACS Catal. 2015, 5, 3905-3909.
[12] a) G. L. Bezemer, P. B. Radstake, U. Falke, H. Oosterbeek, H. P. C. E.
Kuipers, A. J. V. Dillen, K. P. de Jong, J. Catal. 2006, 237, 152-161; b) J. H. D.
Otter, K. P. de Jong, Top. Catal. 2014, 57, 445-450; c) G. J. Hutchings, R. G.
Copperthwaite, M. V. D. Riet, Top. Catal. 1995, 2, 163-172; d) R. G.
Copperthwaite, G. J. Hutchings, M. V. D. Riet, J. Woodhouse, Ind. Eng. Chem.
Res. 1987, 26, 18-19; e) T. E. Feltes, Y. Zhao, R. F. Klie, R. J. Meyer, J. R.
Regalbuto, Chemcatchem 2010, 2, 1065-1068; f) M. Mansouri, H. Atashi, F. F.
Tabrizi, A. A. Mirzaei, G. Mansouri, Ind. Eng. Chem. 2013, 19, 1177-1183; g)
F. Morales, E. D. Smit, F. M. F. D. Groot, T. Visser, B. M. Weckhuysen, J.
Catal. 2007, 246, 91-99; h) J. Ming, N. Koizumi, T. Ozaki, M. Yamada, Appl.
Catal. A Gen. 2001, 209, 59-70; i) E. Iglesia, Appl. Catal. A Gen. 1997, 161,
59-78.
nCn Hm
outlet
(5)
Cn Hm Selectivity =
100%
COinlet COoutlet CO2
outlet
The C5+ represents hydrocarbons with 5 or more carbons and Oxy.
denotes oxygenates and it was obtained according to eq 6:
(C5+ + Oxy.) Selectivity = 100%- CO2 Selectivity – C1-4 Selectivity
(6)
Where COinlet and COoutlet represented moles of CO at the inlet and outlet,
CO2 outlet and CnHm outlet represented moles C of CO2 and hydrocarbons at
the outlet, and Oxy. refers to oxygenate products (mainly aldehydes and
[13] L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y.
Dai, L. Gu, J. Hu, S. Jin, Q. Shen, H. Wang, Nature 2016, 538, 84-87.
[14] a) J. C. Mohandas, M. K. Gnanamani, G. Jacobs, W. Ma, Y. Ji, S.
Khalid, B. H. Davis, ACS Catal. 2011, 1, 1581-1588; b). Cheng, P. Hu, J. Phys.
Chem. C 2010, 114, 1085-1093; c) H. Karaca, O. V. Safonova, S. Chambrey,
P. Fongarland, P. Roussel, A. Griboval-Constant, M. Lacroix, A. Y. Khodakov,
J. Catal. 2011, 277, 14-26; d) M. Claeys, M. E. Dry, E. V. Steen, E. D. Plessis,
P. J. V. Berge, A. M. Saib, D. J. Moodley, J. Catal. 2014, 318, 193-202; e) G.
Kwak, H. W. Min, S. C. Kang, H. G. Park, Y. J. Lee, K. W. Jun, K. S. Ha, J.
Catal. 2013, 307, 27-36.
alcohols). m
was calculated based on the quantitative Rietveld
active sites
refinement of XRD. S
was calculated based on the Scherrer
active sites
equation and nanostructure of active phase. The detailed analysis
procedure could be found in our previous literatures.[13]
Acknowledgements
This work was supported by the Ministry of Science and
Technology of China (2016YFA0202802), Natural Science
Foundation of China (21573271, 91545112, 21703278, and
21776296), Key Research Program of Frontier Sciences, CAS
(Grant No. QYZDB-SSW-SLH035), the “Transformational
Technologies for Clean Energy and Demonstration”, Strategic
Priority Research Program of the Chinese Academy of Sciences
(Grant No. XDA21020600) and the Youth Innovation Promotion
Association of CAS.
[15] Z. Li, L. Zhong, F. Yu, Y. An, Y. Dai, Y. Yang, T. J. Lin, S. Li, H. Wang,
P. Gao, ACS Catal. 2017, 7, 3622-3631
[16] Z. Li, T. Lin, F. Yu, Y. An, Y. Dai, S. Li, L. Zhong, H. Wang, P. Gao, Y.
Sun, Acs Catalysis 2017, 7, 8023-8032.
[17] Y. An, F. Yu, T. Lin, Y. Lu, S. Li, Z. Li, Y. Dai, X. Wang, H. Wang, L.
Zhong, Y. Sun, J. Catal. 2018, 366, 289-299.
[18] B. H. Toby, R. B. V. Dreele, J. Appl. Crystal. 2013, 46, 544-549.
[19] C. Huo, B. Wu, P. Gao, Y. Yang, Y. Li, H. Jiao, Angew. Chem., Int. Ed.
2011, 50, 7403-7406.
[20] a) K. Guse, H. Papp, Fresenius J. Anal. Chem. 1993, 346, 84-91; b) H.
G. Salazar-Contreras, A. Martínez-Hernández, A. A. Boix, G. A. Fuentes, E.
Torres-García, Appl. Catal. B Environ. 2019, 244, 414-426.
[21] Y. Pei, J. Liu, Y. Zhao, Y. Ding, T. Liu, W. Dong, H. Zhu, H. Su, L. Yan,
J. Li, W. Li, ACS Catal. 2015, 5, 3620-3624.
Keywords: Syngas conversion 1, Fischer-Tropsch synthesis 2,
Fischer-Tropsch to olefins 3, Facet effect 4, Co2C 5
[1]
a) D. I. Foustoukos, W. E. Seyfried, Science 2004, 304, 1002-1005; b)
J. Horita, M. E. Berndt, Science 1999, 285, 1055-1057; c) Y. Pei, Y. Ding, H.
Zhu, D. Hong, Chinese J. Catal. 2015, 36, 355-361.
[2]
Fu, Q. K. Shen, D. Shi, K. Wu, Z. Jin, X. Wang, R. Si, Q. S. Song, C. J. Jia, C.
H. Yan, Appl. Catal. B Environ. 2017, 211, 176-187; c) S. Zarubova, S. Rane,
J. Yang, Y. Yu, Y. Zhu, D. Chen, A. Holmen, Chemsuschem 2011, 4, 935 –
942; d). W. Niemantsverdriet, A. M. V. D. Kraan, J. Catal.1981, 72, 385-388.
[3]
W. Chen, T. Lin, Y. Dai, Y. An, F. Yu, L. Zhong, S. Li, Y. Sun, Catal.
Today 2018, 311, 8-22.
[4]
T. Herranz, S. Rojas, F. J. Pérez-Alonso, M. Ojeda, P. Terreros, J. L. G.
Fierro, J. Catal. 2006, 243, 199-211.
[5]
J. X. Liu, H. Y. Su, D. P. Sun, B. Y. Zhang, W. X. Li, J. Am. Chem. Soc.
2013, 135, 16284-16287.
[6]
a) F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou,
M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao,
Science 2016, 351, 1065-1068; b) K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang,
Y. Wang, Angew. Chem., Int. Ed. 2016, 55, 1-5.
[7]
a) Y. Cheng, J. Lin, K. Xu, H. Wang, X. Yao, Y. Pei, S. Yan, M. Qiao, B.
Zong, Acs Catalysis 2016, 6; b) B. Gu, A. Y. Khodakov, V. V. Ordomsky,
Chem. Commun. 2018, 54, 2345; c) E. Ø. Pedersen, I. H. Svenum, E. A.
Blekkan, J. Catal. 2018, 361, 23-32.
[8]
Dugulan, K. P. de Jong, Science 2012, 335, 835-838.
[9] H. M. Torres Galvis, A. C. J. Koeken, J. H. Bitter, T. Davidian, M.
H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I.
Ruitenbeek, A. I. Dugulan, K. P. de Jong, J. Catal. 2013, 303, 22-30.
[10] P. Zhai, C. Xu, R. Gao, X. Liu, M. Li, W. Li, X. Fu, C. Jia, J. Xie, M.
Zhao, Angew. Chem., Int. Ed. 2016, 55, 9902.
7
This article is protected by copyright. All rights reserved.