K.-i. Shimizu et al. / Journal of Catalysis 239 (2006) 402–409
409
4. Conclusion
[10] S. Satokawa, K. Yamaseki, H. Uchida, Appl. Catal. B 34 (2001) 299.
[11] S. Satokawa, Chem. Lett. (2000) 294.
[12] S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal.
B 42 (2003) 179.
[13] J. Shibata, K. Shimizu, S. Satokawa, A. Satsuma, T. Hattori, Phys. Chem.
Chem. Phys. 5 (2003) 2154.
[14] A. Satsuma, J. Shibata, A. Wada, Y. Shinozaki, T. Hattori, Stud. Surf. Sci.
Catal. 145 (2002) 235.
[15] M. Richter, U. Bentrup, E. Eckelt, M. Schneider, M.-M. Pohl, R. Fricke,
Appl. Catal. B 51 (2004) 261.
[16] R. Burch, J.P. Breen, C.J. Hill, B. Krutzsch, K. Konrad, E. Jobson, L. Ci-
der, K. Eränen, F. Klingstedt, L.-E. Lindfors, Top. Catal. 30/31 (2004)
19.
[17] R. Brosius, K. Arve, M.H. Groothaert, J.A. Martens, J. Catal. 231 (2005)
344.
[18] P. Sazama, L. Capek, H. Drobna, Z. Sobalik, J. Dedecek, K. Arve,
B. Wichterlova, J. Catal. 232 (2005) 302.
[19] M. Richter, R. Fricke, R. Eckelt, Catal. Lett. 94 (2004) 115.
The mechanistic cause of the hydrogen promotion effect on
the activity of Ag/Al2O3 for C3H8-SCR was evaluated based on
kinetic and in situ IR studies. Our findings can be summarized
as follows. In the absence of hydrogen, the activation of mole-
cular oxygen into reactive oxygen species and subsequent ox-
idative C3H8 activation to surface oxygenates occur slowly, and
either of these steps can be the rate-determining step of C3H8-
SCR. In the H2–C3H8-SCR reaction, hydrogen is responsible
for the reductive activation of molecular oxygen into reactive
oxygen species involved in the oxidative activation of C3H8. In
the absence of hydrogen, nitrates show a significant poisoning
effect on C3H8-SCR. Hydrogen retards nitrate poisoning by re-
ducing nitrates and thereby decreasing nitrate coverage. In the
absence of gas-phase oxygen, N2 is produced via the reaction of
nitrates with hydrogen, probably through the formation of NH3
on the surface by the NO + H2 reaction. This may be an addi-
tional effect of hydrogen, which enhances NO reduction under
unsteady-state (low A/F) condition. It is well known that the
HC-SCR reaction mechanism depends strongly on the reaction
condition. Consequently, we believe that the proposed role of
hydrogen could explain the hydrogen promotion effect in cer-
tain reaction conditions.
[20] J. Shibata, K. Shimizu, Y. Takada, A. Shichi, H. Yoshida, S. Satokawa,
A. Satsuma, T. Hattori, J. Catal. 222 (2004) 368.
[21] J. Shibata, Y. Takada, A. Shichi, S. Satokawa, A. Satsuma, T. Hattori,
Appl. Catal. B 54 (2004) 137.
[22] J. Shibata, K. Shimizu, Y. Takada, A. Shichi, H. Yoshida, H. Yoshida,
S. Satokawa, A. Satsuma, T. Hattori, J. Catal. 227 (2004) 367.
[23] U. Bentrup, M. Richter, R. Fricke, Appl. Catal. B 55 (2005) 213.
[24] B. Wichterlova, P. Sazama, J.P. Breen, R. Burch, C.J. Hill, L. Capek,
Z. Sobalik, J. Catal. 235 (2005) 195.
[25] K. Shimizu, H. Kawabata, A. Satsuma, T. Hattori, J. Phys. Chem. B 103
(1999) 5240.
[26] K. Shimizu, H. Kawabata, H. Maeshima, A. Satsuma, T. Hattori, J. Phys.
Chem. B 104 (2000) 2885.
Acknowledgment
[27] Y. Wang, K. Otsuka, J. Catal. 155 (1995) 256.
This work was partly supported by a grant-in-aid from the
Ministry of Education, Science and Culture, Japan.
[28] Y. Wang, K. Otsuka, K. Ebitani, Catal. Lett. 35 (1995) 259.
[29] J.-S. Min, H. Ishige, M. Misono, N. Mizuno, J. Catal. 198 (2001) 116.
[30] Y. Wang, K. Otsuka, J. Catal. 171 (1997) 106.
[31] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566.
[32] W. Laufer, W.F. Hoelderich, Chem. Commun. (2002) 1684.
[33] M.D. Baker, G.A. Ozin, J. Godber, J. Phys. Chem. 89 (1985) 305.
[34] Y. Kim, K. Seff, J. Phys. Chem. 91 (1987) 668.
[35] T. Baba, N. Komatsu, H. Sawada, Y. Yamaguchi, T. Takahashi, H. Sugi-
sawa, Y. Ono, Langmuir 15 (1999) 7894.
[36] N.D. Parkyns, in: J.W. Hightower (Ed.), Proc. 5th Int. Congress on Catal-
ysis, Miami Beach, vol. 1, 1972, p. 255.
[37] F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys.
Chem. B 105 (2001) 12732.
References
[1] M. Iwamoto, Catal. Today 29 (1996) 29.
[2] H. Hamada, Catal. Today 22 (1994) 21.
[3] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283.
[4] R. Burch, Catal. Rev. 46 (2004) 271.
[5] T. Miyadera, K. Yoshida, Chem. Lett. (1993) 1483.
[6] T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal.
B 17 (1998) 333.
[7] K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 25 (2000) 239.
[8] K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Appl. Catal.
B 30 (2001) 151.
[9] K. Shimizu, J. Shibata, A. Satsuma, T. Hattori, Phys. Chem. Chem. Phys. 3
(2001) 880.
[38] A.L. Goodman, E.T. Bernard, V.H. Grassian, J. Phys. Chem. A 105 (2001)
6443.
[39] H. Knozinger, Adv. Catal. 25 (1976) 184.
[40] J. Eng, C.H. Bartholomew, J. Catal. 171 (1997) 27.