Q. Zheng, R. Hua and Y. Wan
analyses, the solvents and volatiles were removed under vacuum, References
and the residue was then subjected to column chromatography
[1] R. Rossi, A. Carpita, C. Bigelli, Tetrahedron Lett. 1985, 26, 523.
[2] G. T. Crisp, B. L. Flynn, J. Org. Chem. 1993, 58, 6614.
[3] Q. Liu, D. J. Burton, Tetrahedron Lett. 1997, 38, 4371.
[4] A. Lei, M. Srivastava, X. Zhang, J. Org. Chem. 2002, 67, 1969.
[5] I. J. S. Fairlamb, P. S. Baeuerlein, L. R. Marrison, J. M. Dickinson,Chem.
Commun. 2003, 632.
[6] D. A. Alonso, C. Najera, M. C. Pacheco, Adv. Synth. Catal. 2003, 345,
1146.
[7] A. S. Batsanov, J. C. Collings, I. J. S. Fairlamb, J. P. Holland, J. A. K.
Howard, Z. Lin, T. B. Marder, A. C. Parsons, R. M. Ward, J. Zhu, J. Org.
Chem. 2005, 70, 703.
[8] J.-H. Li, Y. Liang, Y.-X. Xie, J. Org. Chem. 2005, 70, 4393.
[9] W. Yin, C. He, M. Chen, H. Zhang, A. Lei, Org. Lett. 2009, 11, 709.
[10] G. Eglinton, A. R. Galbraith, J. Chem. Soc. 1959, 889.
[11] M. G. B. Drew,E. F. S. Sho,S. M. Nelson,J.Chem.Soc.,Chem.Commun.
1982, 1347.
isolation on silica gel using cyclohexane as eluent. Compound 2a
was obtained in 423.4 mg (2.23 mmol, 89%) as a pale yellow oil.
The results of GC analysis of the reaction mixture revealed that 2a
was formed in 93% yield.
A larger-scale reaction required a longer reaction time (8 h)
to give a satisfactory yield. For example, the reactions of 1a
(30.0 mmol), or 1g (20.0 mmol) at 60 ◦C for 8 h afforded 2a and 2g
in 91 and 96% isolated yields, respectively.
Compounds 2n and 2o are new compounds, which were
characterizedby1H, 13C-NMR, massspectraandelementalanalysis
or HRMS. Other homocoupling products are known compounds
and were characterized by 1H, 13C-NMR and mass spectra. The
spectroscopic data of 2n and 2o are reported below.
[12] J. Li, H. Jiang, Chem. Commun. 1999, 2369.
[13] J. S. Yadav, B. V. S. Reddy, B. K. Reddy, K. U. Gayathri, A. R. Prasad,
Tetrahedron Lett. 2003, 44, 6493.
[14] J. Gil-Molto, C. Najera, Eur. J. Org. Chem. 2005, 4073.
[15] F. Yang, X. Cui, Y.-n. Li, J. Zhang, G.-r. Ren, Y. Wu, Tetrahedron 2007,
63, 1963.
[16] Y. Nishihara, K. Ikegashira, K. Hirabayashi, J.-i. Ando, A. Mori, T.
Hiyama, J. Org. Chem. 2000, 65, 1780.
[17] Y. Nishihara, M. Okamoto, Y. Inoue, M. Miyazaki, M. Miyasaka, K.
Takagi, Tetrahedron Lett. 2005, 46, 8661.
[18] M. W. Paixa˜o, M. Weber, A. L. Braga, J. B. de Azeredo, A. M. Deobald,
H. A. Stefani, Tetrahedron Lett. 2008, 49, 2366.
[19] F. V. Singh, M. F. Z. J. Amaral, H. A. Stefani, Tetrahedron Lett. 2009,
50, 2636.
2-Methyl-6-phenyl-hex-1-ene-3,5-diyne2n
White solid, m.p. 82.0–83.0 (from hot petroleum ether); 1H NMR
(300 MHz, CDCl3) δ 7.51–7.48 (m, 2H), 7.34–7.32 (m, 3H), 5.50 (s,
1H), 5.41 (s, 1H), 1.95 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 132.8,
132.6, 129.3, 128.5, 125.9, 125.2, 121.9, 82.9, 81.4, 73.9, 73.1, 22.9;
GC MS m/z (% rel. inten.) 166 (M+, 90), 165 (100), 150 (25), 126 (6),
115 (4), 98 (6); anal. calcd for C13H10: C, 93.94; H, 6.04. Found: C,
89.33; H, 5.74.
[20] J. P. Finet, A. Y. Fedorov, S. Combes, G. Boyer, Curr.Org.Chem. 2002,
6, 597.
2-Methyl-6-(naphthalene-2-yl)-hex-1-ene-3,5-diyne2o
White solid, m.p. 123.0–124.0 (from hot petroleum ether); 1H NMR
(300 MHz, CDCl3) δ 8.31 (d, 1H, J = 7.2 Hz), 7.83 (d, 2H, J = 7.9 Hz),
7.73 (d, 1H, J = 7.2 Hz), 7.57–7.50 (m, 2H), 7.41 (t, 1H, J = 6.8 Hz),
5.54 (s, 1H), 5.43 (s,1H), 1.97 (s, 3H); 13C NMR (75 MHz, CDCl3) δ
133.9, 133.2, 232.1, 129.8, 128.5, 127.3, 126.8, 126.2, 125.9, 125.4,
125.3, 119.6, 84.0, 79.8, 78.5, 73.3, 23.0; GC MS m/z (% rel. inten.)
[21] S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400.
[22] I. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337.
[23] S. R. Chemler, P. H. Fuller, Chem. Soc. Rev. 2007, 36, 1153.
[24] F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2008, 47, 3096.
[25] M. Carril, R. SanMartin, E. Domínguez, Chem. Soc. Rev. 2008, 37, 639.
[26] L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887.
[27] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054.
[28] S. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359.
[29] T. Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Chem. Soc.
Rev. 2009, 38, 1039.
216 (M+, 100), 201 (20), 187 (6), 152 (7), 107 (7). HRMS m/z [M+
H] 217.1004, calcd for C17H13 217.1011.
+
[30] C. Glaser, Liebigs Ann. Chem. 1870, 154, 137.
[31] A. S. Hay, J. Org. Chem. 1962, 27, 3320.
[32] P. Siemsen,R. C. Livingston,F. Diederich,Angew.Chem.Int.Ed.2000,
39, 2632 and references cited therein.
[33] A. Sakurai, M. Akita, Y. Moro-oka, Organometallics 1999, 18, 3241.
[34] T. B. Peters, J. C. Bohling, A. M. Arif, J. A. Gladysz, Organometallics
1999, 18, 3261.
Acknowledgments
This project (20573061) was supported by the National Natural
Science Foundation of China and the Specialized Research Fund
for the Doctoral Program of Higher Education (20060003079). The
authors greatly thank Miss Maria Victoria Abrenica, from Wellesley
College, for her kind English proofreading.
[35] S. Adimurthy, C. C. Malakar, U. Beifuss, J. Org. Chem. 2009, 74, 5648.
Supporting information
Supporting information may be found in the online version of this
article.
c
Copyright ꢀ 2009 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2010, 24, 314–316