Please do not adjust margins
Organic & Biomolecular Chemistry
Page 5 of 5
DOI: 10.1039/C6OB01099G
Journal Name
COMMUNICATION
4
(a) S.-C. Kuo and L.-J. Huang, J. Med. Chem., 1984, 27, 539;
(b) M. E. A. Zaki, H. A. Saliman, O. A. Hiekal and A. E. Z.
Rashad, Naturforsch.C., 2006, 61, 1; (c) M. Parshad, V. Verma
and D. Kumar, Monatsh. Chem., 2014, 145, 1857; (d) F. M.
Abdelrazek, P. Metzl, O. Kataeval, A. Jager and S. F. El-
Mahrouky, Arch. Pharm. Chem. Life Sci., 2007, 340, 543; (e)
M. M. M. Ramiz, I. S. Abdel Hafiz, M. A. M. Abdel Reheim and
H. M. Gaber, J. Chin. Chem. Soc., 2012, 59, 72; (f) S. R.
Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R.
Bommineni and S. Balasubramanian, Bioorg. Med. Chem.
Lett., 2012, 22, 5272.
longer than that of the regular C–O double bond (1.222 Å). As
such, the C–O bond of the pyrazolidine fragment has a single-
bond character, which accounts for the intermolecular
cyclisation over the oxygen atom. Also, EPM of 3cb (Fig. 6)
demonstrates that the negative charge is located on the
oxygen atom of the pyrazolidine ring. In short, a favourable
geometry associated with the formation of γ-pyrone (
allowed compound to undergo a 5-exo-dig hydroamination
ring closure necessary to yielding a Bimane ring ( ).
6) never
3
7
Most of the γ-pyrone derivatives synthesized herein displayed
strong fluorescence emission under ultraviolet light. For that
reason, we further determined the photophysical properties of
all new γ-pyrone derivatives by measuring their absorption
and emission wavelengths, fluorescence quantum yields, and
absorption coefficients. Table S1 summarizes all these
properties for all new γ-pyrone derivatives. Among them,
5
6
V. Colotta, D. Catarzi, L. Cecchi and C. Martini, Farmaco
1998, 53, 189.
(a) P. Yates and M. J. Jorgenson, J. Am. Chem. Soc., 1963, 85
,
2956; (b) N. Ishibi, M. Odani and M. Sunami, J. Am. Chem.
Soc., 1973, 95, 463; (c) J. W. Pavlik and J. Kwong, J. Am.
Chem. Soc., 1973, 95, 7914; (d) J. A. Barltrop, A. C. Day and C.
J. Samuel, J. Chem. Soc. Chem. Commun., 1977, 598; (e) J. A.
Barltrop, A. C. Day and C. J. Samuel, J. Am. Chem. Soc., 1979,
101, 7521.
compounds 6aa
,
6ad and 6ag displayed exceptional
7
8
S. Gelin, B. Changtegrel and A. I. Nadi, J. Org. Chem., 1983,
48, 4078.
photophysical features presenting great potential for use in
applications for biochemical labelling and light-emitting
devices.
(a) J. W. Pavlik, V. Ervithayasuporn and S. Tantayanon, J.
Heterocycl. Chem., 2011, 48, 710; (b) W. Becker, G. A. Eller
and W. A. Holzer, Synthesis, 2005, 15, 2583; (c) A. Kumar, P.
Lohan, D. K. Aneja, G. K. Gupta, D. Kaushik and O. Prakash,
Eur. J. Med. Chem., 2012, 50, 61; (d) J. W. Pavlik, V.
Ervithayasuporn, J. C. MacDonald and S. Tantayanon,
Conclusions
In sum, we developed a one-pot, two-step synthetic method
for constructing a range of highly emissive γ-pyranopyrazole
derivatives. Remarkably, this one-pot system is based on a
transition metal–free synthetic protocol involving the use of an
inorganic base (e.g. Cs2CO3) to promote an intramolecular 6-
Arkivoc, 2009, 8, 57; (e) H. Kurod and H. Izawa, Bull. Chem.
Soc. Jpn., 2007, 80, 780.
9
G. Deng, F. Wang, S. Lu and B. Cheng, Org.Lett., 2015, 17
,
,
,
4651.
10 Z. Zheng, Z. Yu, N. Luo and X. Han, J. Org. Chem., 2006, 71
9695.
endo-dig cyclization process. Based on computational studies, 11 (a) T. N. Poudel and Y. R. Lee, Org. Biomol. Chem. 2014, 12
919; (b) T. N. Poudel and Y. R. Lee, Org. Lett. 2015, 17, 2050;
(c) T. N. Poudel and Y. R. Lee Chem. Sci., 2015, , 7028; (d) H.
Vander Mierde, P. Van Der Voort, F. Verpoort, Tetrahedron
Lett., 2008, 48, 6893; (e) X.F. Wu, S. Oschatz, A. Block, A.
we ultimately proposed a reasonable mechanism for product
selectivity.
6
Spannenberg and P. Langer, Org. Biomol. Chem., 2014, 12
1865; (f) S. Basceken, S. Kaya and M. Balci, J. Org. Chem.,
2015, 80, 12552.
,
Acknowledgements
We thank İzmir Institute of Technology (IZTECH) and TUBİTAK
(113Z157) for financial support. U.B. acknowledges the
support from Turkish Academy of Sciences, Outstanding Young
Scientist Award (TÜBA-GEBİP 2015).
12 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W.
Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
13 (a) K. Ishida, K. Morokuma and A. Komornicki, J. Chem. Phys.,
1977, 66, 2153; (b) K. Fukui, Acc. Chem. Res., 1981, 14, 363;
(c) H. P. Hratchian and H. B. Schlegel, J. Chem. Phys., 2004,
120, 9918.
14 (a) P. C. Hariharan and J. A. Pople, Theor. Chem. Acc., 1973,
28, 213; (b) A. D. McLean and G. S. Chandler, J. Chem. Phys.
1980, 72, 5639.
Notes and references
1
(a) I. Abe, S. Oguro, Y. Utsumi, Y. Sano and H. Noguchi, J. Am.
Chem. Soc., 2005, 127, 12709; (b) M. P. Sibi and J.
Zimmerman, J. Am. Chem. Soc., 2006, 128, 13346.
2
(a) D. T. Puerta, J. Mongan, B. L. Tran, J. A. McCammon and
S. M. Cohen, J. Am. Chem. Soc., 2005, 127, 14148; (b) M. M.
M. Pinto, M. E. Sousa and M. S. Nascimento, J. Curr. Med.
Chem., 2005, 12, 2517; (c) K. Morisaki and S. Ozaki, Chem.
Pharm. Bull., 1996, 44, 1647; (d) D. Garey, M. L. Ramirez, S.
Gonzales, A. Wertsching, S. Tith, K. Keefe and M. R. Pena, J.
Org. Chem., 1996, 61, 4853.
3
(a) A. Venkatesham, R. S. Rao, K. Nagaiah, J. S. Yadav, G.
RoopaJones, S. J. Basha, B. Sridhard and A. Addlagatta, Med.
Chem. Commun., 2012,
A. Ettam and M. Pal, Beilstein J. Org. Chem., 2009,
R. Kaur, N. Taheam, A. K. Sharma and R. Kharb, Res. J. Pharm.
Biol. Chem. Sci., 2013, , 79; (d) S. Lu, J. Tian, W. Sun, J.
3, 652; (b) D. R. Gorja, V. R. Batchu,
5, 64; (c)
4
Meng, X. Wang, X. Fu, A. Wang, D. Lai, Y. Liu and L. Zhou,
Molecules, 2014, 19, 7169.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins