F. Nagatsugi et al. / Bioorg. Med. Chem. Lett. 12 (2002) 487–489
489
References and Notes
1. Soyfer, V. N.;Potaman, V. N. Triple-Helical Nucleic Acids;
Springer: Berlin, Heidelberg and New York, 1996.
2. Thuong, N. T.;He lene, C. Angew. Chem., Int. Ed. Engl.
1993, 32, 666.
3. (a) Prevot, I. H.;Leumann, C. J. Bioorg. Med. Chem. Lett.
1999, 9, 2657. (b) Obika S.;Hari, Y.;Sekiguchi, M.;Imanishi,
T. Angew. Chem., Int. Ed, Engl. 2001, 40, 2079. (c) Sasaki, S.;
Yamauchi, H.;Nagatsugi, F.;Takahasi, R.;Taniguchi, Y.;
Maeda, M. Tetrahedron Lett. In press.
4. (a) Selected reviews, Maher, L. J., III;Wold, B.;Dervan,
P. B. Antisense Res. Develop 1991, 1, 277. (b) Sasaki, S. J.
Synth Org. Chem. 1997, 55, 590. (c) Giovannangeli, C.;
Helene, C. Antisense & Nucleic Acid Drug Develop 1997, 7,
413. (d) Gowers, D. M.;Fox, K. R. Nucleic Acids Res. 1999,
27, 1569. (e) Gowers, D. M.;Bijapur, J.;Brown, T.;Fox, K. R.
Biochemistry 1999, 38, 13747.
Figure 3. Gel-shift analysis of triplexes with 15% non-denaturing
polyacrylamide gel at pH 5.5 and 7.7. The triplex formation was per-
formed at pH 4.5 for 24 h under the same condition as described in
Figure 2, and was analyzed by gel electrophoresis at indicated pH.
the pyrimidine strand at the TA base pair of the triplex
has been proven.
We next examined the effect of cross-link to the TA
interrupting site on the stability of the triplex by gel-
shift assay with non-denaturing gel (Fig. 3). The tri-
plexes containing C-GC base triplet were observed at
the concentrations higher than 1 mM of the TFO at pH
5.5 (lanes 2–6), whereas they dissociated at pH 7.7
(lanes 7–12). The less-mobility bands in lanes 15–18
showed the same gel-shift with the triplexes of lanes 2–6,
suggesting that the triplex is stabilized by the interstrand
cross-link between 8 and 10.17 In the investigation with
the monomer derivative of the vinyl compound (5) in
organic solvents, no adduct was formed with the ade-
nosine derivative.18 The cross-linking reaction with 2
and adenine may be effected by close proximity within
the triplex as expected.
5. Wang, Z.;Rana, T. M. Proc. Natl. Acad. Sci. U.S.A. 1997,
94, 6688.
6. Praseuth, D.;Guieysse, A. L.;He lene, C. Biochimica et
Biophys. Acta Gene Struct. Expr. 1999, 1489, 181.
7. Faria, M.;Wood, C. D.;Perrouault, L.;Nelson, J. S.;
Winter, A. H.;White, M. R.;He lene, C.;Giovannangeli, C.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3862.
8. Majumdar, A.;Khorlin, A. N.;Dyatkina, F. L. M.;Lin, J.;
Powell, J.;Liu, Z. Z.;Fei, Y.;Khripine, K. A.;Watanabe, J.;
George, P.;Glazer, M.;Seidman, M. M. Nat. Genet. 1998, 20,
212.
9. Chan, P. P.;Lin, M.;Faruqi, A. F.;Powell, J.;Seidman,
M. M.;Glazer, P. M. J. Biol. Chem. 1999, 274, 11541.
10. Vasquez, K. M.;Narayanan, L.;Glazer, P. M. Science
2000, 290, 530.
11. (a) Recent articles: Reed, M. W.;Wald, W.;Meyer, R. B.
J. Am. Chem. Soc. 1998, 120, 9729. (b) Belousov, E. S.;Afo-
nina, I. A.;Podyminogin, M. A.;Gamper, H. B.;Reed, M. W.;
Wydro, R. M.;Meyer, R. B. Nucleic Acids Res. 1997, 25, 3440.
(c) Lukhtanov, E. A.;Mills, A. G.;Kutyavin, I. V.;Gorn,
V. V.;Reed, M. W.;Meyer, R. B. Nucleic Acids Res. 1997, 25,
5077.
In conclusion, a highly selective cross-linking reaction
to the adenine at the TA interrupting site within the
triplex has been achieved with the use of the TFO
incorporating the new cross-linking agent 2. It should
be noted that only a minor change from a butyl to an
ethyl spacer caused a drastic change in base selectivity,
and the validity of the design concept has been con-
firmed. The new cross-liking reagent 2 is the first exam-
ple toward the TA interrupting site within the triplex.
We have recently reported that the ethylsulfoxide sub-
stitution on the vinyl group of the 2-amino-6-vinylpur-
ine skeleton improved its reactivity to a greater extent at
pH 7.13d Such modification of 2 would effect more effi-
cient reactivity within the triplex at pH 7, and produce a
useful cross-linking agent for application to site-directed
modification of an adenine within a selected target.
12. Some examples are reviewed;Sasaki, S. Eur. J. Pharm.
Sci. 2001, 13, 43.
13. (a) Nagatsugi, F.;Uemura, K.;Nakashima, S.;Maeda, S.
Sasaki, Tetrahedron Lett. 1995, 36, 421. (b) Nagatsugi, F.;
Uemura, K.;Nakashima, S.;Maeda, M.;Sasaki, S.
Tetra-
hedron 1997, 53, 3035. (c) Nagatsugi, F.;Kawasaki, T.;Usui,
D.;Maeda, M.;Sasaki, S. J. Am. Chem. Soc. 1999, 121, 6753.
(d) Nagatsugi, F.;Tokuda, N.;Maeda, M.;Sasaki, S. Bioorg.
Med. Chem. Lett. 2001, 11, 2577.
14. Nagatsugi, F.;Usui, D.;Kawasaki, T.;Maeda, M.;
Sasaki, S. Bioorg. Med. Chem. Lett. 2001, 11, 343.
15. Matsuura, N.;Yashiki, Y.;Nakashima, S.;Maeda, M.;
Sasaki, S. Heterocycles 1999, 51, 975.
16. Kjellberg, J.;Liljenberg, M.;Johansson, G. Tetrahedron
1986, 42, 6541.
Acknowledgements
17. Stabilization of a triple helix by cross-linking has been
demonstrated;Kool, E. T. Chem. Rev. 1997, 97, 1473.
18. As the authentic compound for the adduct between 2 and
adenosine could not be obtained, we are now investigating the
cross-linking reaction in large quantities to isolate and deter-
mine the cross-linked adduct.
This work was supported by a Grant-in-Aid for Scien-
tific Research (C), [Priority Area (A)(2)], from the Min-
istry of Education, Science, Sports, Science and
Technology, Japan.