Communication
ChemComm
5 P. Guerin, S. El Mouatassim and Y. Menezo, Hum. Reprod. Update,
2001, 7, 175–189.
100 mM CS and MEG (Fig. 3d and e). These data indicate that
SCS1 is a sensitive and selective CS probe, with a signal strong
enough to allow the measurement of even endogenously pro-
duced CS in live cells.
6 D. G. de Matos, D. Nogueira, R. Cortvrindt, C. Herrera, T. Adriaenssens,
R. S. Pasqualini and J. Smitz, Mol. Reprod. Dev., 2003, 64, 214–218.
7 (a) A. Brodin-Sartorius, M. J. Tete, P. Niaudet, C. Antignac, G. Guest,
C. Ottolenghi, M. Charbit, D. Moyse, C. Legendre, P. Lesavre, P. Cochat
and A. Servais, Kidney Int., 2012, 81, 179–189; (b) W. A. Gahl, J. Z. Balog
and R. Kleta, Ann. Intern. Med., 2007, 147, 242–250.
8 (a) C. Gibrat and F. Cicchetti, Prog. Neuropsychopharmacol. Biol.
Psychiatry, 2011, 35, 380–389; (b) M. Bousquet, C. Gibrat, M. Ouellet,
C. Rouillard, F. Calon and F. Cicchetti, J. Neurochem., 2010, 114,
1651–1658.
We even further attempted CS measurement with SCS1 in a
living tissue, a freshly prepared rat hippocampus, a part of the
brain that plays an important role in learning and memory. As
displayed in Fig. 4a, CS is surprisingly abundant in the pyramidal
neuron layers and the granule cells in the CA1–CA3 regions and
the DG, respectively. Moreover, the higher-magnification images
(Fig. 4b–d) of these regions clearly showed the levels of CS in the
individual cells, in which CS mainly existed in the perikaryon of
the neurons. Indeed, this image is the first image showing the CS
distribution in brain tissue, which would certainly be highly
valuable for further understanding of the therapeutic mechanism
of CS in neurodegenerative diseases. These results clearly confirm
that SCS1 is suitable for monitoring CS deep inside living tissues,
possibly serving as a research tool for cysteamine-related therapy.
To close, we have exploited for the first time a CS-selective
and ratiometric TP fluorescent probe, SCS1. This probe shows a
marked blue-to-yellow emission color change in response to CS
in physiological buffer, high selectivity for CS over other thiols
and biologically relevant species, and pH insensitivity in the
biologically relevant pH ranges. This probe can precisely detect
CS at the subcellular level in live cells and living brain tissues
using TPM with minimum interference from cytotoxicity and
photobleaching artifacts. In addition, its application to hippo-
campal tissues revealed that CS is abundant in the cell bodies of
pyramidal cells and granule cells in CAs and DG, respectively.
These findings demonstrate that SCS1 could play an indispensable
role in understanding the biological and medicinal roles of CS in
living systems.
9 (a) M. H. Lee, Z. Yang, C. W. Lim, Y. H. Lee, S. Dongbang, C. Kang
and J. S. Kim, Chem. Rev., 2013, 113, 5071–5109; (b) X. Chen,
Y. Zhou, X. Peng and J. Yoon, Chem. Soc. Rev., 2010, 39, 2120–2135.
10 (a) Q. Zhang, D. Yu, S. Ding and G. Feng, Chem. Commun., 2014, 50,
14002–14005; (b) Y. Zhang, J.-H. Wang, W. Zheng, T. Chen, Q.-X.
Tong and D. Li, J. Mater. Chem. B, 2014, 2, 4159–4166; (c) X. Xiong,
F. Song, G. Chen, W. Sun, J. Wang, P. Gao, Y. Zhang, B. Qiao, W. Li,
S. Sun, J. Fan and X. Peng, Chem. – Eur. J., 2013, 19, 6538–6545;
(d) H. Zhang, P. Wang, Y. Yang and H. Sun, Chem. Commun., 2012,
48, 10672–10674; (e) H. Wang, G. Zhou, H. Gai and X. Chen, Chem.
Commun., 2012, 48, 8341–8343; ( f ) Z. Guo, S. Nam, S. Park and
J. Yoon, Chem. Sci., 2012, 3, 2760–2765; (g) H. S. Jung, T. Pradhan,
J. H. Han, K. J. Heo, J. H. Lee, C. Kang and J. S. Kim, Biomaterials,
2012, 33, 8495–8502; (h) X. Yang, Y. Guo and R. M. Strongin, Angew.
Chem., Int. Ed., 2011, 50, 10690–10693.
11 F. Helmchen and W. Denk, Nat. Methods, 2005, 2, 932–940.
12 (a) H. M. Kim and B. R. Cho, Acc. Chem. Res., 2009, 42, 863–872;
(b) S. Yao and K. D. Belfield, Eur. J. Org. Chem., 2012, 3199–3217;
(c) F. Liu, T. Wu, J. Cao, S. Cui, Z. Yang, X. Qiang, S. Sun, F. Song,
J. Fan, J. Wang and X. Peng, Chem. – Eur. J., 2013, 19, 1548–1553;
(d) L. Li, C. W. Zhang, G. Y. Chen, B. Zhu, C. Chai, Q. H. Xu, E. K.
Tan, Q. Zhu, K. L. Lim and S. Q. Yao, Nat. Commun., 2014, 5, 3276;
(e) X. Dong, C. H. Heo, S. Chen, H. M. Kim and Z. Liu, Anal. Chem.,
2014, 86, 308–311; ( f ) L. Zhou, X. Zhang, Q. Wang, Y. Lv, G. Mao,
A. Luo, Y. Wu, Y. Wu, J. Zhang and W. Tan, J. Am. Chem. Soc., 2014,
136, 9838–9841.
13 (a) S. K. Bae, C. H. Heo, D. J. Choi, D. Sen, E. H. Joe, B. R. Cho and
H. M. Kim, J. Am. Chem. Soc., 2013, 135, 9915–9923; (b) H. J. Kim,
C. H. Heo and H. M. Kim, J. Am. Chem. Soc., 2013, 135, 17969–17977.
14 (a) H. W. Lee, C. H. Heo, D. Sen, H. O. Byun, I. H. Kwak, G. Yoon and
H. M. Kim, Anal. Chem., 2014, 86, 10001–10005; (b) L. Li, X. Shen,
Q. H. Xu and S. Q. Yao, Angew. Chem., Int. Ed., 2013, 52, 424–428;
(c) L. Li, J. Ge, H. Wu, Q. H. Xu and S. Q. Yao, J. Am. Chem. Soc., 2012,
134, 12157–12167.
15 H. M. Kim, H. J. Choo, S. Y. Jung, Y. G. Ko, W. H. Park, S. J. Jeon,
C. H. Kim, T. Joo and B. R. Cho, ChemBioChem, 2007, 8, 553–559.
16 H. M. Kim and B. R. Cho, Chem. Commun., 2009, 153–164.
17 C. S. Lim, G. Masanta, H. J. Kim, J. H. Han, H. M. Kim and B. R. Cho,
J. Am. Chem. Soc., 2011, 133, 11132–11135.
This work was supported by National Research Foundation (NRF)
grants funded by the Korean Government (2012R1A2A1A03670456)
and the Basic Science Research Program through the NRF
(2012R1A1A2006259).
Notes and references
18 (a) M. J. Frisch, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT,
ˇ
1 T. Nitto and K. Onodera, J. Pharmacol. Sci., 2013, 123, 1–8.
2010; (b) S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55,
2 A. Jezegou, E. Llinares, C. Anne, S. Kieffer-Jaquinod, S. O’Regan,
117–129.
J. Aupetit, A. Chabli, C. Sagne, C. Debacker, B. Chadefaux-Vekemans, 19 L. Dode, L. Raeymaekers, L. Missiaen, B. Vilsen, J. P. Andersen and
A. Journet, B. Andre and B. Gasnier, Proc. Natl. Acad. Sci. U. S. A., 2012,
109, E3434–E3443.
F. Wuytack, in Calcium Signaling, ed. J. W. Putney, Jr., CRC Press,
Boca Raton, FL, 2nd edn, 2006.
3 M. J. Wilmer, L. A. Kluijtmans, T. J. van der Velden, P. H. Willems, 20 C. R. Yellaturu, M. Bhanoori, I. Neeli and G. N. Rao, J. Biol. Chem.,
P. G. Scheffer, R. Masereeuw, L. A. Monnens, L. P. van den Heuvel
and E. N. Levtchenko, Biochim. Biophys. Acta, 2011, 1812, 643–651.
4 F. Drago and C. Montoneri, Life Sci., 1997, 61, 21–28.
2002, 277, 40148–40155.
21 R. B. Richerson and D. M. Ziegler, Methods Enzymol., 1987, 143,
410–415.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015