3
12. Sakaguchi, S.; Hirabayashi, T.; Ishii, Y. Chem. Commun. 2002,
mechanism for the synthesis of O-phthalimide oximes from vinyl
azides under the action of NHPI and CAN (Scheme 3).
516-517.
13. Minisci, F.; Punta, C.; Recupero, F. J. Mol. Catal. A: Chem. 2006,
251, 129-149.
N3
14. Kompanets, M. O.; Kushch, O. V.; Litvinov, Y. E.; Pliekhov, O.
L.; Novikova, K. V.; Novokhatko, A. O.; Shendrik, A. N.;
Vasilyev, A. V.; Opeida, I. O. Catal. Commun. 2014, 57, 60-63.
15. Kasperczyk, K.; Orlińska, B.; Zawadiak, J. Cent. Eur. J. Chem.
2014, 12, 1176-1182.
16. Kamijo, S.; Amaoka, Y.; Inoue, M. Tetrahedron Lett. 2011, 52,
4654-4657.
17. Soo Kim, S.; Rajagopal, G. Synth. Commun. 2004, 34, 2237-2243.
18. Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010-
2013.
19. Bag, R.; Sar, D.; Punniyamurthy, T. Org. Biomol. Chem. 2016, 14,
3246-3255.
20. Bag, R.; Sar, D.; Punniyamurthy, T. ACS Omega 2017, 2, 6278-
6290.
21. Bag, R.; De, P. B.; Pradhan, S.; Punniyamurthy, T. Eur. J. Org.
Chem. 2017, 2017, 5424-5438.
22. Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Org. Lett. 2015, 17,
1589-1592.
23. Li, Y.-X.; Wang, Q.-Q.; Yang, L. Org. Biomol. Chem. 2017, 15,
1338-1342.
24. Li, Y.; Zhou, X.; Zheng, G.; Zhang, Q. Beilstein J. Org. Chem.
2015, 11, 2721-2726.
25. Xia, X.-F.; Gu, Z.; Liu, W.; Wang, H.; Xia, Y.; Gao, H.; Liu, X.;
Liang, Y.-M. J. Org. Chem. 2015, 80, 290-295.
26. Krylov, I. B.; Paveliev, S. A.; Syroeshkin, M. A.; Korlyukov, A.
A.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Nikishin, G. I.;
Terent’ev, A. O. Beilstein J. Org. Chem. 2018, 14, 2146-2155.
27. Nadia, J.; Shahbaz, K.; Ismail, M.; Farid, M. M. ACS Sustainable
Chemistry & Engineering 2018, 6, 862-871.
28. Krylov, I. B.; Paveliev, S. A.; Matveeva, O. K.; Terent'ev, A. O.
Tetrahedron 2019, 75, 2529-2537.
29. Hu, B.; DiMagno, S. G. Org. Biomol. Chem. 2015, 13, 3844-3855.
30. Hayashi, H.; Kaga, A.; Chiba, S. J. Org. Chem. 2017, 82, 11981-
11989.
31. Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. Chem. Soc. Rev. 2017,
46, 7208-7228.
32. Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X. Angew. Chem.,
Int. Ed. 2017, 56, 13805-13808.
33. Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Org. Lett.
2017, 19, 4026-4029.
1
O
O
PINO
N3
Ph
N O
CAN
N
OPhth
A
N OH
Ph
2
O
O
N2
OPhth
OPhth
N
3
OPhth
B
Ph
Ph
Scheme 3. Proposed mechanism for the CAN-mediated
synthesis of O-phthalimide oxime 3 from vinyl azide 1 and
NHPI 2.
The reaction begins with the formation of PINO radical from
NHPI 2 under the action of CAN, followed by addition to the
terminal carbon atom of the C=C bond of vinyl azide 1. Nitrogen
elimination from the resulting radical A occurs with the
formation of iminyl radical B. At the last stage radical B is
intercepted by the PINO radical to form product 3.
3. Conclusion
In summary, we have disclosed the reaction between various
vinyl azides and N-hydroxyphthalimide resulting in the formation
of O-phthalimide oximes with an N-O-N fragment. The reaction
proceeds under the action of cerium(IV) ammonium nitrate
which acts as an oxidizing agent for the formation of the
phthalimide-N-oxyl radical from NHPI. The radical pathway
starts with the addition of the PINO radical to the C=C bond of
the vinyl azide which triggers
a
cascade of radical
transformations, including generation of the iminyl radical and its
recombination with the PINO radical. The developed approach
was successfully extended to various substituted vinyl azides. As
a result, a wide range of O-phthalimide oximes was obtained with
the yields ranging from 54-88%.
Acknowledgment
34. Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X. Org. Lett. 2017, 19,
6240-6243.
Scientific Schools Development Program by Zelinsky Institute
of organic chemistry is gratefully acknowledged.
35. Wang, Y.-F.; Lonca, G. H.; Chiba, S. Angew. Chem., Int. Ed.
2014, 53, 1067-1071.
36. Wang, Y.-F.; Lonca, G. H.; Le Runigo, M.; Chiba, S. Org. Lett.
2014, 16, 4272-4275.
37. Mackay, E. G.; Studer, A. Chem. - Eur. J. 2016, 22, 13455-13458.
38. Yang, T.; Zhu, H.; Yu, W. Org. Biomol. Chem. 2016, 14, 3376-
3384.
39. Qin, H.-T.; Wu, S.-W.; Liu, J.-L.; Liu, F. Chem. Commun. 2017,
53, 1696-1699.
Supplementary data
Supplementary data (experimental procedures, spectroscopic
data for all of the synthesized compounds) associated with this
article can be found, in the online version, at
40. Chen, B.; Guo, S.; Guo, X.; Zhang, G.; Yu, Y. Org. Lett. 2015, 17,
4698-4701.
41. Kong, X.; Liu, Y.; Lin, L.; Chen, Q.; Xu, B. Green Chem. 2019,
21, 3796-3801.
42. Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570-
12572.
43. Yang, J.-C.; Zhang, J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016,
14, 9806-9813.
44. Wang, Q.; Huang, J.; Zhou, L. Adv. Synth. Catal. 2015, 357, 2479-
2484.
References and notes
1.
2.
3.
4.
5.
Bagryanskaya, E. G.; Marque, S. R. Chem. Rev. 2014, 114, 5011-
5056.
Tebben, L.; Studer, A. Angew. Chem., Int. Ed. 2011, 50, 5034-
5068.
Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14, 245-
251.
Hamada, S.; Furuta, T.; Wada, Y.; Kawabata, T. Angew. Chem.,
Int. Ed. 2013, 52, 8093-8097.
45. Terent'ev, A. O.; Krylov, I. B.; Sharipov, M. Y.; Kazanskaya, Z.
M.; Nikishin, G. I. Tetrahedron 2012, 68, 10263-10271.
Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53, 8824-
8838.
Declaration of interests
6.
7.
8.
9.
Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116-3134.
Muramatsu, W.; Nakano, K. Org. Lett. 2015, 17, 1549-1552.
Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800-3842.
Galli, C.; Gentili, P.; Lanzalunga, O. Angew. Chem., Int. Ed. 2008,
47, 4790-4796.
☒ The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.
10. Wentzel, B. B.; Donners, M. P. J.; Alsters, P. L.; Feiters, M. C.;
Nolte, R. J. M. Tetrahedron 2000, 56, 7797-7803.
11. Amaoka, Y.; Kamijo, S.; Hoshikawa, T.; Inoue, M. J. Org. Chem.
2012, 77, 9959-9969.