Paper
NJC
17 M. Vlassa, I. Ciocan-Tarta, F. Margineanu and I. Oprean, 40 L. Z. Fekri, M. Nikpassand and S. N. Khakshoor,
Tetrahedron, 1996, 52, 1337–1342.
J. Organomet. Chem., 2019, 894, 18–27.
41 L. Z. Fekri, M. Nikpassand, S. Shariati, B. Aghazadeh,
R. Zarkeshvari and N. N. Pour, J. Organomet. Chem., 2018,
871, 60–73.
1
1
2
8 Q. Liu and D. J. Burton, Tetrahedron Lett., 1997, 38, 4371.
9 J. G. Molt ´o and C. N ´a jera, Eur. J. Org. Chem., 2005, 4073–4081.
0 J. H. Li, Y. Liang and Y. X. Xie, J. Org. Chem., 2005, 70,
4
393–4396.
42 K. H. Lee, B. Lee, K. R. Lee, M. H. Yi and N. H. Hur, Chem.
Commun., 2012, 48, 4414–4416.
43 M. Gholinejad and A. Aminianfar, J. Mol. Catal. A: Chem.,
2015, 397, 106–113.
2
2
2
2
1 I. J. S. Fairlamb, P. S. B ¨a uerlein, L. R. Marrison and
J. M. Dickinson, Chem. Commun., 2003, 632–633.
2 Z. Chen, R. Shen, C. Chen and J. Y. Li, Chem. Commun.,
2
018, 54, 13155–13158.
44 R. Chutia and B. Chetia, New J. Chem., 2018, 42, 15200.
3 W. Yin, C. He, M. Chen, H. Zhang and A. Lei, Org. Lett., 45 S. N. Chen, W. Y. Wu and F. Y. Tsai, Green Chem., 2009, 11,
009, 11, 709–712. 269–274.
4 J. D. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, 46 A. Toledo, I. F. Ardoiz, F. Maseras and A. C. Alb ´e niz, ACS
2
V. E. Ronaldson and A. M. Z. Slawin, J. Am. Chem. Soc., 2010,
32, 6243–6248.
5 G. Hilt, C. Hengst and M. Arndt, Synthesis, 2009, 395–398.
Catal., 2018, 8, 7495–7506.
47 Z. Chen, R. Shen, C. Chen, J. Li and Y. Li, Chem. Commun.,
2018, 54, 13155–13158.
1
2
2
6 P. Bharathi and M. Periasamy, Organometallics, 2000, 19, 48 (a) H. Firouzabadi, N. Iranpoor and M. Gholinejad, Tetra-
5
511–5513.
hedron, 2009, 65, 7079–7084; (b) S. Martinez, M. Moreno-
Man, A. Vallribera, U. Schubert, A. Roig and E. Molins,
New J. Chem., 2006, 30, 1093–1097.
2
2
2
7 A. C. Gonz ´a lez, A. Abad, A. Corma, H. Garc ´ı a, M. Iglesias
and F. S ´a nchez, Angew. Chem., Int. Ed., 2007, 46, 1536–1538.
8 A. Leyva-P ´e rez, A. Dom ´e nech, S. I. Al-Resayes and A. Corma, 49 B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley
ACS Catal., 2012, 2, 121–126. Publishing Company Inc., Massachusetts, 1956.
9 (a) S. Adimurthy, C. C. Malakar and U. Beifuss, J. Org. Chem., 50 I. Nedkov, R. E. Vandenberghe, T. Marinova, P. Thailhades,
2009, 74, 5648–5651; (b) S. N. Chen, W. Y. Wu and F. Y. Tsai,
T. Merodiiska and I. Avramova, Appl. Surf. Sci., 2006, 253,
Green Chem., 2009, 11, 269–274; (c) L. Li, J. Wang, G. Zhang
2589–2596.
and Q. Liu, Tetrahedron Lett., 2009, 50, 4033–4036; 51 (a) R. S. Yadav, J. Havlica, J. Masilko, L. Kalina,
(
d) D. Wang, J. Li, N. Li, T. Gao, S. Hou and B. Chen, Green
J. Wasserbauer, M. Hajd u´ chov ´a , V. Enev, I. Ku ˇr itka and
Z. Kozakova, J. Magn. Magn. Mater., 2015, 394, 439–447;
(b) A. B. Nawale, N. S. Kanhe, K. R. Patil, S. V. Bhoraskar,
V. L. Mathe and A. K. Das, J. Alloys Compd., 2011, 509,
4404–4413.
Chem., 2010, 12, 45–48; (e) Q. Zheng, R. Hua and Y. Wan,
Appl. Organomet. Chem., 2010, 24, 314–316; ( f ) K. Yin, C. Li,
J. Li and X. Jia, Green Chem., 2011, 13, 591–593; (g) S. Zhang,
X. Liu and T. Wang, Adv. Synth. Catal., 2011, 353,
1
2
463–1466; (h) B. S. Navale and R. G. Bhat, RSC Adv., 52 (a) W. Xu, H. Sun, B. Yu, G. Zhang, W. Zhang and Z. Gao,
013, 3, 5220–5226; (i) Y. Zhu and Y. Shi, Org. Biomol.
ACS Appl. Mater. Interfaces, 2014, 6, 20261–20268;
(b) M. Brun, A. Berthet and J. Bertolini, J. Electron Spectrosc.
Relat. Phenom., 1999, 104, 55–60.
Chem., 2013, 11, 7451–7454; ( j) X. Fan, N. Li, T. Shen,
X. M. Cui, H. Lv, H. B. Zhu and Y. H. Guan, Tetrahedron,
2
014, 70, 256–261.
53 H. Khojasteh, V. Mirkhani, M. Moghadam, S. Tangestaninejad
and I. Mohammadpoor-Baltork, J. Nanostruct., 2015, 5,
271–280.
3
3
3
3
3
3
3
3
3
3
0 Y. Huang, K. Zheng, X. Liu, X. Meng and D. Astruc, Inorg.
Chem. Front., 2020, 7, 939–945.
1 Y. Zhu, N. Deng, M. Feng and P. Liu, Chin. J. Catal., 2019, 40, 54 D. Wang, W. Liu, F. Bian and W. Yu, New J. Chem., 2015, 39,
505–1515. 2052–2059.
2 H. Xu, L. Wu, J. Tian, J. Wang, P. Wang, X. Niu and X. Yao, 55 J. Yang, D. Wang, W. Liu, X. Zhang, F. Bian and W. Yub,
Synfacts, 2020, 0077. Green Chem., 2013, 15, 3429–3437.
3 H. Xu, L. Wu, J. Tian, J. Wang, P. Wang, X. Niu and X. Yao, 56 D. Yuan and H. Zhang, Appl. Catal., A, 2014, 475, 249–255.
1
Eur. J. Org. Chem., 2019, 6690–6696.
4 Y. Shi, R. Yue, Y. Zhang, S. Lv, L. Bai, C. Zhang and X. Wen,
Catal. Commun., 2019, 124, 103–107.
57 (a) M. Tobiszewski, J. Namie ´s nik and F. P. Pereira, Green
Chem., 2017, 19, 1034–1042; (b) F. P. Byrne, S. Jin,
G. Paggiola, T. H. M. Petchey, J. H. Clark, T. J. Farmer,
A. J. Hunt, C. R. McElroy and J. Sherwood, Sustainable Chem.
Processes, 2016, 4, 7; (c) G. K o¨ nig, M. T. Reetz and W. Thiel,
J. Phys. Chem. B, 2018, 122, 6975–6988.
58 M. Gholinejad and J. Ahmadi, ChemPlusChem, 2015, 80,
973–979.
59 M. V. Parmekar and A. V. Salker, Appl. Nanosci., 2020, 10,
317–328.
5 Q. Hua, X. L. Shia, Y. Chena, F. Wanga, Y. Wenga and
P. Duana, J. Ind. Eng. Chem., 2019, 69, 387–396.
6 W. Lu, W. Sun, X. Tan, L. Gao and G. Zheng, Catal.
Commun., 2019, 125, 98–102.
7 P. T. Anastas and J. C. Warner, Green Chemistry Theory and
Practice, Oxford University Press, New York, 1998.
8 B. I. Kharisov, H. V. Rasika Dias and O. V. Kharissova,
Arabain J. Chem., 2019, 12, 1234–1246.
60 (a) Y. Gao, G. Wang, L. Chen, P. Xu, Y. Zhao, Y. Zhou and L. Han, J. Am.
Chem. Soc., 2009, 131, 7956; (b) G. Eglinton and A. R. Galbraith, J. Chem.
Soc., 1959, 889; (c) L. Fomina, B. Vazquez, E. Tkatchouk and S. Fomine,
9 L. Z. Fekri and S. Zeinali, Appl. Organomet. Chem., 2020,
5629.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020