Advanced Synthesis & Catalysis
10.1002/adsc.202000134
convergent new route into systems of interest in
Heimburger, N. Henry, K. Jouvin, G. Karthikeyan, A.
Laouiti, M. Lecomte, A. Martin-Mingot, B. Métayer, B.
Michelet, A. Nitelet, C. Theunissen, S. Thibaudeau, J.
Wang, M. Zarca, C. Zhang, Chem. Lett. 2016, 45, 574-
585.
medicinal chemistry such as imidazo[2,1-b]thiazol-
3
(2H)-one,
imidazo[1,2-a]imidazolone
and
imidazo[1,2-a]pyrimidinone. The reactions are
practically straightforward and applicable on a gram
scale. Sulfenyl ynamides are effective substrates
across a range of different nitrenoids providing access
to various nitrogen-heterocycles with geminal amino-
sulfenyl substitution patterns in a mild and
regioselective fashion.
[
3] A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007,
4
6, 3410-3449.
[4] Review (a) a) F. Pan, C. Shu, L.-W. Ye, Org. Biomol.
Chem. 2016, 14, 9456-9465; For illustrative recent
examples, see: b) J. Matsuoka, H. Kumagai, S. Inuki, S.
Oishi, H. Ohno, J. Org. Chem. 2019, 84, 9358-9363; c)
F. Sánchez-Cantalejo, J. D. Priest, P. W. Davies, Chem.
Eur. J. 2018, 24, 17215-17219; d) R. Vanjari, S. Dutta,
M. P. Gogoi, V. Gandon, A. K. Sahoo, Org. Lett. 2018,
20, 8077-8081; e) M. Lin, L. Zhu, J. Xia, Y. Yu, J.
Chen, Z. Mao, X. Huang, Adv. Synth. Catal. 2018, 360,
2280-2284; f) S. S. Giri, L.-H. Lin, P. D. Jadhav, R.-S.
Liu, Adv. Synth. Catal. 2017, 359, 590-596.
This study highlights the reactivity-enhancing
influence of sulfur substitution in gold catalysis with
N,S-substituted alkynes behaving as privileged
substrates in these annulation reactions. We conclude
that the ability to ‘switch-on’ otherwise unproductive
processes offers significant potential for reaction
discovery based on π-acid activation and that the
wider use of sulfenyl ynamides in such programmes
may prove beneficial.
[
5] For reviews, see a) P. W. Davies, M. Garzón, Asian J.
Org. Chem. 2015, 4, 694-708; b) E. Aguilar, J.
Santamaría, Org. Chem. Front. 2019, 6, 1513-1540.
Experimental Section
A heat-gun dried Schlenk tube under argon was charged
[
[
[
6] P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew.
Chem., Int. Ed. 2011, 50, 8931-8935.
with ynamide 18a (1.11 g, 3.50 mmol), aminide 4 (1.06 g,
5
.25
mmol
1.5
eq.)
and
dichloro(2-
pyridinecarboxylate)gold (68.2 mg, 5 mol%) in dry 1,4-
dioxane (35 mL) and the mixture was stirred at 90 °C for 3
h. The reaction mixture was allowed to cool down to room
temperature and the solvent was removed under reduced
pressure. The residue obtained was purified by flash
column chromatography [Hexane:EtOAc (3:2)] affording
imidazole 19a as a beige solid (1.39 g, 90%).
7] M. Garzón, P. W. Davies, Org. Lett. 2014, 16, 4850-
4
853.
8] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao,
W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-
1
271.
[
9] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A.
Acknowledgements
S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794-
7
97.
We thank the University of Birmingham and AstraZeneca plc for
funding (studentship to EMA). The authors gratefully
acknowledge support from the Centre for Chemical and
Materials Analysis in the School of Chemistry at UoB and its staff.
Matthew Wakeling and Dr Miguel Garzón (UoB) are thanked for
the donation of some ynamides.
[10] M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun.
2
016, 52, 6324-6327.
[
11] a) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F.
Rominger, A. S. K. Hashmi, Org. Lett. 2017, 19, 1020-
1
2
023; b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett.
017, 19, 3307-3310.
References
[
[
12] C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li, Y.-F. Ping, X.
[
1] For representative preparative methods, see a) X.
Zhang, Y. Zhang, J. Huang, R. P. Hsung, K. C. M.
Kurtz, J. Oppenheimer, M. E. Petersen, I. K.
Sagamanova, L. Shen, M. R. Tracey, J. Org. Chem.
Lu, L.-W. Ye, J. Am. Chem. Soc. 2015, 137, 9567-9570.
13] L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17,
3
0-33.
2
006, 71, 4170-4177; b) T. Hamada, X. Ye, S. S. Stahl,
[14] X. Tian, L. Song, M. Rudolph, F. Rominger, T. Oeser,
A. S. K. Hashmi, Angew. Chem. Int. Ed. 2019, 58,
3589-3593.
J. Am. Chem. Soc. 2008, 130, 833-835; c) A. Coste, G.
Karthikeyan, F. Couty, G. Evano, Angew. Chem., Int.
Ed. 2009, 48, 4381-4385; d) Y. Tu, X. Zeng, H. Wang,
J. Zhao, Org Lett 2018, 20, 280-283; e) S. J. Mansfield,
R. C. Smith, J. R. J. Yong, O. L. Garry, E. A. Anderson,
Org. Lett. 2019, 21, 2918-2922.
[
[
15] a) Y. Yu, G. Chen, L. Zhu, Y. Liao, Y. Wu, X. Huang,
J. Org. Chem. 2016, 81, 8142-8154; b) J. Gonzalez, J.
Santamaria, A. L. Suarez-Sobrino, A. Ballesteros, Adv.
Synth. Catal. 2016, 358, 1398-1403; c) D. Allegue, J.
González, S. Fernández, J. Santamaría, A. Ballesteros,
Adv. Synth. Catal. 2019, 361, 758-768.
[
2] a) G. Evano, A. Coste, K. Jouvin, Angew. Chem. Int.
Ed. 2010, 49, 2840-2859; b) K. A. De Korver, H. Li, A.
G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung,
Chem. Rev. 2010, 110, 5064-5106; c) X.-N. Wang, H.-
S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L.
Kedrowski, R. P. Hsung, Acc. Chem. Res. 2014, 47,
16] For some recent examples, see Ref. 11 and a) X. Tian,
L. Song, M. Rudolph, Q. Wang, X. Song, F. Rominger,
A. S. K. Hashmi, Org. Lett. 2019, 21, 1598-1601; b) X.
Tian, L. Song, M. Wang, Z. Lv, J. Wu, W. Yu, J.
Chang, Chem. Eur. J. 2016, 22, 7617-7622; c) V.
5
60-578; d) G. Evano, N. Blanchard, G. Compain, A.
Coste, C. S. Demmer, W. Gati, C. Guissart, J.
6
This article is protected by copyright. All rights reserved.