C
Synlett
D. Ghorai et al.
Letter
Based on our previous literature reports,6c–d,10 the work-
ing mode of the air-stable SPO-enabled C–O activation is
suggested to initially involve the formation of complex 3
through self-assembly, along with the subsequent C–O acti-
vation by the key hetero-bimetallic intermediate 4 (Scheme 3).
Jamison, T. F. Nature 2014, 509, 299. (e) Cornella, J.; Zarate, C.;
Martin, R. Chem. Soc. Rev. 2014, 43, 8081. (f) Li, B. J.; Yu, D. G.;
Sun, C. L.; Shi, Z. J. Chem. Eur. J. 2011, 17, 1728. (g) Rosen, B. M.;
Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.;
Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346. (h) Yu, D.-G.;
Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486. Selected exam-
ples: (i) Wang, T.-H.; Ambre, R.; Wang, Q.; Lee, W.-C.; Wang, P.-C.;
Liu, Y.; Zhao, L.; Ong, T.-G. ACS Catal. 2018, 8, 11368. (j) Cao, Z.-C.;
Luo, Q.-Y.; Shi, Z.-J. Org. Lett. 2016, 18, 5978. (k) Zhang, J.; Xu, J.;
Xu, Y.; Sun, H.; Shen, Q.; Zhang, Y. Organometallics 2015, 34,
5792. (l) Iglesias, M. J.; Prieto, A.; Nicasio, M. C. Org. Lett. 2012,
14, 4318. (m) Xie, L.-G.; Wang, Z.-X. Chem. Eur. J. 2011, 17, 4972.
(n) Dankwardt, J. W. Angew. Chem. Int. Ed. 2004, 43, 2428. For
general reviews on nickel catalyzed transformations, see:
(o) Castro, L. C. M.; Chatani, N. Chem. Lett. 2015, 44, 410.
O
H
n-Bu
n-Bu
OH
P
P
n-Bu
n-Bu
+
+
[Ni]
H+
(n-Bu)2P(O)H
Br
H
Mg
O
n-Bu
P
n-Bu
O
O
O
n-Bu
n-Bu
ArMgBr
– RH
n-Bu
n-Bu
n-Bu
n-Bu
P
P
P
(
(
p) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 19.
q) Nakao, Y. Chem. Rec. 2011, 11, 242, and references cited
[
Ni]
[Ni]
4
3
therein.
Scheme 3 Plausible working mode of SPOs for C–O activation
(
(
5) Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295.
6) Select reviews: (a) Herault, D.; Nguyen, D. H.; Nuel, D.; Buono,
G. Chem. Soc. Rev. 2015, 44, 2508. (b) Shaikh, T. M.; Weng, C.-M.;
Hong, F.-E. Coord. Chem. Rev. 2012, 256, 771. (c) Ackermann, L.
Isr. J. Chem. 2010, 50, 652. (d) Ackermann, L. Synthesis 2006,
1557. (e) Dubrovina, N. V.; Börner, A. Angew. Chem. Int. Ed.
In summary, we have reported on the first use of air-
stable secondary phosphine oxides (SPOs) for challenging
11
cross-couplings of aryl ethers by C–O activation. Thus, in
situ generated nickel catalysts enabled efficient Kumada–
Corriu arylations of naphthyl ethers at room temperature,
even when using sterically hindered aryl nucleophiles.
2004, 43, 5883.
(
7) (a) Ghorai, D.; Müller, V.; Keil, H.; Stalke, D.; Zanoni, G.;
Tkachenko, B. A.; Schreiner, P. R.; Ackermann, L. Adv. Synth.
Catal. 2017, 359, 3137. (b) Hu, C.-Y.; Chen, Y.-Q.; Lin, G.-Y.;
Huang, M.-K.; Chang, Y.-C.; Hong, F.-E. Eur. J. Inorg. Chem. 2016,
3
131. (c) Cano, I.; Tschan, M. J. L.; Martínez-Prieto, L. M.;
Funding Information
Philippot, K.; Chaudret, B.; van Leeuwen, P. W. N. M. Catal. Sci.
Technol. 2016, 6, 3758. (d) Wellala, N. P.; Guan, H. Org. Biomol.
Chem. 2015, 13, 10802. (e) Cano, I.; Huertos, M. A.; Chapman, A.
M.; Buntkowsky, G.; Gutmann, T.; Groszewicz, P. B.; van
Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2015, 137, 7718.
Generous support by the European Research Council under the Euro-
pean Community’s Seventh Framework Program (FP7 2007-
2
–
013)/ERC Grant agreement no. 307535, and the Regione Lombardia
Cariplo Foundation is gratefully acknowledged.()
(f) Ackermann, L.; Kapdi, A. R.; Fenner, S.; Kornhaass, C.;
Schulzke, C. Chem. Eur. J. 2011, 17, 2965. (g) Ackermann, L.;
Potukuchi, H. K.; Kapdi, A. R.; Schulzke, C. Chem. Eur. J. 2010, 16,
Supporting Information
3300. (h) Ackermann, L.; Vicente, R.; Hofmann, N. Org. Lett.
Supporting information for this article is available online at
2010, 11, 4274. (i) Achard, T.; Giordano, L.; Tenaglia, A.;
Gimbert, Y.; Buono, G. Organometallics 2010, 29, 3936.
https://doi.org/10.1055/s-0037-1611663.
S
u
p
p
orti
n
g Inform ati
o
n
S
u
p
p
orit
n
g Inform ati
o
n
(j) Christiansen, A.; Selent, D.; Spannenberg, A.; Baumann, W.;
Franke, R.; Börner, A. Organometallics 2010, 29, 3139.
(k) Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.;
Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. Eur. J. Org.
Chem. 2010, 2733. (l) Ackermann, L.; Barfüßer, S. Synlett 2009,
References and Notes
(
1) (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev.
015, 115, 9587. (b) Johansson Seechurn, C. C.; Kitching, M. O.;
Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
c) Modern Arylation Methods, 2nd ed; Ackermann, L., Ed.;
2
808. (m) Yang, D. X.; Colletti, S. L.; Wu, K.; Song, M.; Li, G. Y.;
Shen, H. C. Org. Lett. 2009, 11, 381. (n) Billingsley, K. L.;
Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 2008, 47, 4695.
(
Wiley-VCH: Weinheim, 2009. (d) Beller, M.; Bolm, C. Transition
Metals for Organic Synthesis; Wiley-VCH: Weinheim, 2004.
(o) Ackermann, L.; Born, R.; Spatz, J. H.; Meyer, D. Angew. Chem.
Int. Ed. 2005, 44, 7216.
(e) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(
8) (a) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.;
Ackermann, L. Chem. Rev. 2019, in press; doi: 10
(2) Kozhushkov, S. I.; Potukuchi, H. K.; Ackermann, L. Catal. Sci.
Technol. 2013, 3, 562.
1021/acs.chemrev.8b00507. (b) Lorion, M. M.; Maindan, K.;
(
3) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli, M.
J. Org. Chem. 1984, 49, 4894. (b) Wenkert, E.; Michelotti, E. L.;
Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246.
Kapdi, A. R.; Ackermann, L. Chem. Soc. Rev. 2017, 46, 7399.
(
(
c) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
d) Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743.
(4) Representative reviews: (a) Tobisu, M.; Chatani, N. Acc. Chem.
(
9) (a) Sauermann, N.; Loup, J.; Kootz, D.; Berkessel, A.; Ackermann,
L. Synthesis 2017, 49, 3476. (b) Song, W.; Ackermann, L. Angew.
Chem. Int. Ed. 2012, 51, 8251. (c) Ackermann, L.; Pospech, J.;
Potukuchi, H. K. Org. Lett. 2012, 14, 2146. (d) Ackermann, L.;
Res. 2015, 48, 1717. (b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res.
2015, 48, 886. (c) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Acc.
Chem. Res. 2015, 48, 2344. (d) Tasker, S. Z.; Standley, E. A.;
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D