Journal of the American Chemical Society
Page 4 of 5
(h) Ouchi, M.; Sawamoto, M. Macromolecules 2017, 50, 2603−2614.
sion that RCTꢀROP of macrocyclic monomers consisting of
hydrolytically degradable ester linkages offers a promising soluꢀ
tion to this challenge. In order to test this concept, the degradaꢀ
tion reactivity of the homopolymer P-4 was first investigated. P-
4 was treated with sodium methoxide using the conditions deꢀ
veloped by Hawker and coworkers,12 and the degradation prodꢀ
ucts 8 and 9 from the cleavage of the ester linkages were unamꢀ
biguously confirmed by NMR (Scheme S9). Next, the degradaꢀ
tion of P10, a copolymer of methyl acrylate (88 mol%) and
monomer 4 (12 mol%) (Mn = 10.2 kg/mol, Đ = 1.17, Figure
S12) was investigated (see Supplementary Information for the
synthesis and compositional analysis of the copolymer). SEC
analysis of the degradation of P10 exhibited a dramatic molecuꢀ
lar weight reduction after only 10 seconds, with the reaction
reaching completion after 10 minutes (Figure 2). These degraꢀ
dation experiments highlight the utility of RCTꢀROP to fabriꢀ
cate synthetic polymers with functional mainꢀchain structures
such as novel (bio)degradable materials.
(2) (a) Handbook of RingꢀOpening Polymerization. WileyꢀVCH Verlag
GmbH & Co.: Weinheim, Germany, 2009. (b) Strandman, S.; Gautrot, J.
E.; Zhu, X. X. Polym. Chem. 2011, 2, 791ꢀ799.
(3) There are cases in which the driving force of ROP comes not only
from the relief of the ring strain but also from the formation of a carbonꢀ
oxygen double bond or aromatization. For selected examples, see (a)
Bailey, W. J.; Ni, Z.; Wu, S. R. Macromolecules 1982, 15, 711ꢀ714. (b)
Errede, L. A. J. Polym. Sci. 1961, 49, 253ꢀ265.
(4) (a) Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y.
Chem. Rev. 2017, 117, 1319ꢀ1406. (b) Endo, T.; Sudo, A. Radical Ringꢀ
Opening Polymerization: Molecular Designs, Polymerization
Mechanisms, and Living/Controlled Systems. In Controlled Radical
Polymerization: Mechanisms; ACS Symposium Series, Matyjaszewski,
K.; Sumerlin, B. S.; Tsarevsky, N. V.; Chiefari, J., Eds. American
Chemical Society: Washington, D.C., 2015; pp 19ꢀ50.
(5) (a) Anslyn, E. V.; Dougherty, D. A. Chapter 2: Strain and Stability.
In Modern Physical Organic Chemistry, University Science: Sausalito,
CA, 2006; pp 100ꢀ109. (b) Liebman, J. F.; Greenberg, A. Chem. Rev.
1976, 76, 311ꢀ365. (c) Marsault, E.; Peterson, M. L. J. Med. Chem. 2011,
54, 1961ꢀ2004.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, macrocyclic monomers containing an allyl alꢀ
kylsulfone motif that can undergo radical cascadeꢀtriggered
ringꢀopening polymerization have been developed for the conꢀ
trolled synthesis of polymers with extended mainꢀchain strucꢀ
tures. Excellent control over polymerization and high chainꢀend
fidelity allows for the preparation of polymeric systems with
wellꢀdefined architectures, exemplified by the first radical block
copolymerization of macrocyclic monomers, and the incorporaꢀ
tion of degradable structural elements in polymer backbone.
Future work will investigate the generality of the radical casꢀ
cadeꢀtriggered transformations in polymer chemistry. The appliꢀ
cation of this approach to the synthesis of polymers with diverse
mainꢀchain structural motifs with tailored functions will be anꢀ
other focus of our future exploration.
(6) (a) Bailey, W. J. Polym. J. 1985, 17, 85ꢀ95. (b) Nuyken, O.; Pask, S.
D. Polymers 2013, 5, 361ꢀ403.
(7) (a) Plesniak, M. P.; Huang, H.ꢀM.; Procter, D. J. Nat. Rev. Chem.
2017, 1, 0077. (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew.
Chem., Int. Ed. 2006, 45, 7134ꢀ7186.
(8) Gutekunst, W. R.; Hawker, C. J. J. Am. Chem. Soc. 2015, 137, 8038ꢀ
8041.
(9) (a) Rowlands, G. J. Tetrahedron 2009, 65, 8603ꢀ8655. (b) Gorsche,
C.; Griesser, M.; Gescheidt, G.; Moszner, N.; Liska, R. Macromolecules
2014, 47, 7327ꢀ7336. (c) Park, H. Y.; Kloxin, C. J.; Abuelyaman, A. S.;
Oxman, J. D.; Bowman, C. N. Macromolecules 2012, 45, 5640ꢀ5646.
(10) (a) Cho, I.; Kim, S.ꢀk.; Lee, M.ꢀH. J. Polym. Sci. Poly. Symp. 1986,
74, 219ꢀ226. (b) Cho, I. Prog. Polym. Sci. 2000, 25, 1043ꢀ1087.
(11) (a) Evans, R. A.; Moad, G.; Rizzardo, E.; Thang, S. H.
Macromolecules 1994, 27, 7935ꢀ7937. (b) Evans, R. A.; Rizzardo, E.
Macromolecules 1996, 29, 6983ꢀ6989.
(12) Paulusse, J. M. J.; Amir, R. J.; Evans, R. A.; Hawker, C. J. J. Am.
Chem. Soc. 2009, 131, 9805ꢀ9812.
(13) QuicletꢀSire, B.; Zard, S. Z. J. Am. Chem. Soc. 1996, 118, 1209ꢀ
1210.
(14) Without stabilization of the resulting alkyl radical, the equilibrium
generally favors the alkylsulfonyl radical. For the reverse process to
incorporate SO2 in radical polymerization, see (a) Jiang, Y.; Fréchet, J.
M. J. Macromolecules 1991, 24, 3528ꢀ3532. (b) Possanza Casey, C. M.;
Moore, J. S. ACS Macro Lett. 2016, 5, 1257ꢀ1260.
(15) (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968,
41, 2815ꢀ2815. (b) Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev.
2012, 41, 68ꢀ78.
(16) (a) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le,
T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.
Macromolecules 1998, 31, 5559ꢀ5562. (b) Moad, G.; Rizzardo, E.;
Thang, S. H. Aust. J. Chem. 2012, 65, 985ꢀ1076.
(17) The plot deviates from the linear trend at higher conversion due to
reduced polymerization rates.
ASSOCIATED CONTENT
Supporting Information
Complete synthetic experiments, optimization tables, experiꢀ
mental methods, and additional experimental data. This material
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare the following competing financial interꢀ
est(s): A provisional patent based on this work has been filed
(U.S. no. 62/684,810).
(18) Pasch, H.; Schrepp, W. MALDIꢀTOF Mass Spectrometry of
Synthetic Polymers; SpringerꢀVerlag: Berlin, 2003.
ACKNOWLEDGMENTS
(19) (a) Amass, W.; Amass, A.; Tighe, B. Polym. Int. 1999, 47, 89ꢀ144.
(b) Delplace, V.; Nicolas, J. Nat. Chem. 2015, 7, 771ꢀ784. (c) Hillmyer,
M. A.; Tolman, W. B. Acc. Chem. Res. 2014, 47, 2390ꢀ2396. For
theoretical study about degradation behaviors, see (d) Gigmes, D.; Van
Steenberge, P. H.; Siri, D.; D'hooge, D. R.; Guillaneuf, Y.; Lefay, C.
Macromol. Rapid Commun. 2018, 1800193.
We thank Marek Domin, Bo Li, Will Gutekunst, and Jeff Byers
for characterization assistance and helpful discussions. The
research is supported by a startup fund from Boston College to
J.N.
REFERENCES AND NOTES
(1) (a) Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101,
3661ꢀ3688. (b) Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem.
2005, 58, 379ꢀ409. (c) Braunecker, W. A.; Matyjaszewski, K. Prog.
Polym. Sci. 2007, 32, 93ꢀ146. (d) Moad, G.; Rizzardo, E.; Thang, S. H.
Polymer 2008, 49, 1079ꢀ1131. (e) Ouchi, M.; Terashima, T.; Sawamoto,
M. Chem. Rev. 2009, 109, 4963ꢀ5050. (f) Nicolas, J.; Guillaneuf, Y.;
Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Prog. Polym. Sci. 2013,
38, 63ꢀ235. (g) Allaoua, I.; Goi, B. E.; Obadia, M. M.; Debuigne, A.;
Detrembleur, C.; Drockenmuller, E. Polymer Chemistry 2014, 5, 2973.
4
ACS Paragon Plus Environment