G [(À)-5] was achieved in an enantioselective manner. This
established the absolute configuration of neovibsanin G and
14-epi-neovibsanin G as 11S, which is amongst the strongest
evidence for Fukuyama’s proposal that the biosynthetic pro-
genitor of the neovibsanins is vibsanin B3 (which was also
shown to possess the 11S configuration16). The success of this
biogenetically inspired synthesis lends overwhelming support
for Fukuyama’s postulated biosynthesis3 of the neovibsanins.
The authors thank the Australian Research Council (DP
DP0666855) for financial support, Prof. P. V. Bernhardt and
Dr P. Y. Hayes (School of Chemistry and Molecular Bio-
sciences, University of Queensland [UQ]) for X-ray crystallo-
graphical data collection and chiral HPLC purification
(Enantioselective chromatography facility) respectively,
Dr G. Pierens (Centre for Advanced Imaging, UQ) for NMR
data collection, Prof. Y. Fukuyama (Faculty of Pharmaceutical
Sciences, Tokushima Bunri University) for the NMR spectra
of natural neovibsanin G and 14-epi-neovibsanin G, and
Dr M. Mauduit (Ecole Nationale Superieure de Chimie de
Rennes) and Prof. A. Alexakis (Departement de Chimie
Organique, Universite de Geneve) for their advice concerning
the asymmetric 1,4-addition.
Notes and references
1 Y. Fukuyama, M. Kubo, T. Esumi, K. Harada and H. Hioki,
Heterocycles, 2010, 81, 1571–1602.
2 Y. Fukuyama, H. Minami, K. Takeuchi, M. Kodama and
K. Kawazu, Tetrahedron Lett., 1996, 37, 6767–6770.
3 Y. Fukuyama, M. Kubo, H. Minami, H. Yuasa, A. Matsuo,
T. Fujii, M. Morisaki and K. Harada, Chem. Pharm. Bull., 2005,
53, 72–80.
4 M. Kubo, Y. Kishimoto, K. Harada, H. Hioki and Y. Fukuyama,
Bioorg. Med. Chem. Lett., 2010, 20, 2566–2571.
5 H. Imagawa, H. Saijo, T. Kurisaki, H. Yamamoto, M. Kubo,
Y. Fukuyama and M. Nishizawa, Org. Lett., 2009, 11, 1253–1255.
6 A. P. J. Chen, C. C. Muller, H. M. Cooper and C. M. Williams,
Org. Lett., 2009, 11, 3758–3761.
7 A. P. J. Chen, C. C. Mueller, H. M. Cooper and C. M. Williams,
Tetrahedron, 2010, 66, 6842–6850.
8 M. Kubo, Y. Minoshima, D. Arimoto, H. Minami, K. Harada,
H. Hioki and Y. Fukuyama, Heterocycles, 2009, 77, 539–546.
9 A. P. J. Chen and C. M. Williams, Org. Lett., 2008, 10, 3441–3443.
10 T. Esumi, T. Mori, M. Zhao, M. Toyota and Y. Fukuyama, Org.
Lett., 2010, 12, 888–891.
11 T. Esumi, M. Zhao, T. Kawakami, M. Fukumoto, M. Toyota and
Y. Fukuyama, Tetrahedron Lett., 2008, 49, 2692–2696.
12 M. F. Jung and M. A. Lyster, J. Am. Chem. Soc., 1977, 99,
968–969.
13 H. Meerwein, P. Borner, O. Fuchs, H. J. Sasse, H. Schrodt and
J. Spille, Chem. Ber., 1956, 89, 2060–2079.
14 C. M. Williams and L. N. Mander, Tetrahedron, 2001, 57,
425–447.
15 B. D. Schwartz, C. M. Williams, E. Anders and P. V. Bernhardt,
Tetrahedron, 2008, 64, 6482–6487.
Scheme 4 EtAlCl2 mediated bicyclo[3.3.1]nonane cyclisation and the
completion of the total synthesis.
completed the synthesis of (À)-5 and (À)-4 respectively. The
moderate yields obtained for the installation of the side-chain
was typical using this approach. Although we have developed
methodology15 to access this functional group in one step and
in higher yields, it was not applicable in this case.
In conclusion, six years after their isolation,3 the first total
16 Y. Fukuyama, H. Minami, S. Takaoka, M. Kodama, K. Kawazu
and H. Nemoto, Tetrahedron Lett., 1997, 38, 1435–1438.
synthesis of (À)-neovibsanin G [(À)-4] and (À)-14-epi-neovibsanin
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 287–289 289