ACS Medicinal Chemistry Letters
Letter
(4) Nepali, K.; Ojha, R.; Sharma, S.; Bedi, P. M. S.; Dhar, K. L.
Tubulin Inhibitors: A Patent Survey. Recent Pat. Anti-Cancer Drug
Discovery 2014, 9, 176−220.
as a Novel Tumor-Targeted Cytotoxin. J. Org. Chem. 2004, 69, 8987−
8996.
(21) Kangas, L.; Gronroos, M.; Nieminen, A. L. Bioluminescence of
̈
cellular ATP: a new method for evaluating cytotoxic agents in vitro.
Med. Biol. 1984, 62, 338−343.
(5) Chandrasekaran, G.; Tatrai, P.; Gergely, F. Hitting the brakes:
targeting microtubule motors in cancer. Br. J. Cancer 2015, 113, 693−
698.
(22) Crouch, S. P. M.; Kozlowski, R.; Slater, K. J.; Fletcher, J. The use
of ATP bioluminescence as a measure of cell proliferation and
cytotoxicity. J. Immunol. Methods 1993, 160, 81−88.
(23) Bornens, M. The Centrosome in Cells and Organisms. Science
2012, 335, 422−426.
(6) Richette, P.; Bardin, T. Colchicine for the treatment of gout.
Expert Opin. Pharmacother. 2010, 11, 2933−2938.
(7) Finkelstein, Y.; Aks, S. E.; Hutson, J. R.; Juurlink, D. N.; Nguyen,
P.; Dubnov-Raz, G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine
poisoning: the dark side of an ancient drug. Clin. Toxicol. 2010, 48,
407−414.
(8) Massarotti, A.; Theeramunkong, S.; Mesenzani, O.; Caldarelli, A.;
Genazzani, A. A.; Tron, G. C. Identification of Novel Antitubulin
Agents by Using a Virtual Screening Approach Based on a 7-Point
Pharmacophore Model of the Tubulin Colchi-Site. Tron. Chem. Biol.
Drug Des. 2011, 78, 913−922.
(9) Brossi, A.; Yeh, H. J. C.; Chrzanowska, M.; Wolff, J.; Hamel, E.;
Lin, C. M.; Quin, F.; Suffness, M.; Silverton, J. Colchicine and its
analogues: Recent findings. Med. Res. Rev. 1988, 8, 77−94.
(10) Nicolaou, K. C.; Valiulin, R. A.; Pokorski, J. K.; Chang, V.;
Chen, J. S. Bio-inspired synthesis and biological evaluation of a
colchicine-related compound library. Bioorg. Med. Chem. Lett. 2012, 22,
3776−3780.
(11) Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.;
Redondo-Horcajo, M.; Díaz, J. F.; Barasoain, I.; Marco, J. A. Design
and Synthesis of Pironetin Analogue/Colchicine Hybrids and Study of
Their Cytotoxic Activity and Mechanisms of Interaction with Tubulin.
J. Med. Chem. 2014, 57, 10391−10403.
(12) Cosentino, L.; Redondo-Horcajo, M.; Zhao, Y.; Santos, A. R.;
Chowdury, K. F.; Vinader, V.; Abdallah, Q. M. A.; Abdel-Rahman, H.;
Fournier-Dit-Chabert, J.; Shnyder, S. D.; Loadman, P. M.; Fang, W.-S.;
Díaz, J. F.; Barasoain, I.; Burns, P. A.; Pors, K. Synthesis and Biological
Evaluation of Colchicine B-Ring Analogues Tethered with Halo-
genated Benzyl Moieties. J. Med. Chem. 2012, 55, 11062−11066.
(13) Zefirova, O. N.; Nurieva, E. V.; Shishov, D. V.; Baskin, I. I.;
(24) Godinho, S. A.; Picone, R.; Burute, M.; Dagher, R.; Su, Y.;
́
Leung, C. T.; Polyak, K.; Brugge, J. S.; Thery, M.; Pellman, D.
Oncogene-like induction of cellular invasion from centrosome
amplification. Nature 2014, 510, 167−171.
(25) Ganem, N. J.; Godinho, S. A.; Pellman, D. A mechanism linking
extra centrosomes to chromosomal instability. Nature 2009, 460, 278−
282.
(26) Ogden, A.; Rida, P. C. G.; Aneja, R. Let’s huddle to prevent a
muddle: centrosome declustering as an attractive anticancer strategy.
Cell Death Differ. 2012, 19, 1255−1267.
(27) Pannu, V.; Rida, P. C. G.; Celik, B.; Turaga, R. C.; Ogden, A.;
Cantuaria, G.; Gopalakrishnan, J.; Aneja, R. Centrosome-declustering
drugs mediate a two-pronged attack on interphase and mitosis in
supercentrosomal cancer cells. Cell Death Dis. 2014, 5, 1538−1548.
(28) Laurila, N.; Koivunen, J. EGFR inhibitor and chemotherapy
combinations for acquired TKI resistance in EGFR-mutant NSCLC
models. Med. Oncol. 2015, 32, 1−7.
(29) Avidor-Reiss, T.; Gopalakrishnan, J. Cell cycle regulation of the
centrosome and cilium. Drug Discovery Today: Dis. Mech. 2013, 10,
e119−e124.
(30) Kim, S.-K.; Cho, S.-M.; Kim, H.; Seok, H.; Kim, S.-O.; Kwon, T.
K.; Chang, J.-S. The colchicine derivative CT20126 shows a novel
microtubule-modulating activity with apoptosis. Exp. Mol. Med. 2013,
45, e19.
Fuchs, F.; Lemcke, H.; Schroder, F.; Weiss, D. G.; Zefirov, N. S.;
̈
Kuznetsov, S. A. Synthesis and SAR requirements of adamantane−
colchicine conjugates with both microtubule depolymerizing and
tubulin clustering activities. Bioorg. Med. Chem. 2011, 19, 5529−5538.
(14) Zefirova, O. N.; Lemcke, H.; Lantow, M.; Nurieva, E. V.;
Wobith, B.; Onishchenko, G. E.; Hoenen, A.; Griffiths, G.; Zefirov, N.
S.; Kuznetsov, S. A. Unusual Tubulin-Clustering Ability of Specifically
C7-Modified Colchicine Analogues. ChemBioChem 2013, 14, 1444−
1449.
(15) Nicolaus, N.; Zapke, J.; Riesterer, P.; Neudorfl, J.-M.; Prokop,
̈
A.; Oschkinat, H.; Schmalz, H.-G. Azides Derived from Colchicine and
their Use in Library Synthesis: a Practical Entry to New Bioactive
Derivatives of an Old Natural Drug. ChemMedChem 2010, 5, 661−
665.
(16) Nicolaus, N.; Reball, J.; Sitnikov, N.; Velder, J.; Termath, A.;
Fedorov, A. Y.; Schmalz, H.-G. A Convenient Entry to New C-7-
Modified Colchicinoids through Azide Alkyne [3 + 2]-Cycloaddition:
Application of Ring-Contractive Rearrangements. Heterocycles 2011,
82, 1585−1600.
(17) Kuznetsova, N. R.; Svirshchevskaya, E. V.; Sitnikov, N. S.;
Abodo, L.; Sutorius, H.; Zapke, J.; Velder, J.; Thomopoulou, P.;
Oschkinat, H.; Prokop, A.; Schmalz, H.-G.; Fedorov, A. Y.;
Vodovozova, E. L. Lipophilic prodrugs of a triazole-containing
colchicine analogue in liposomes: Biological effects on human tumor
cells. Russ. J. Bioorg. Chem. 2013, 39, 543−552.
(18) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A
Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed
Regioselective “Ligation” of Azides and Terminal Alkynes. Angew.
Chem., Int. Ed. 2002, 41, 2596−2599.
(19) Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−Alkyne
Cycloaddition. Chem. Rev. 2008, 108, 2952−3015.
(20) Bagnato, J. D.; Eilers, A. L.; Horton, R. A.; Grissom, C. B.
Synthesis and Characterization of a Cobalamin−Colchicine Conjugate
D
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX