10.1002/chem.201900620
Chemistry - A European Journal
COMMUNICATION
compared to the drug set, while extending more into sphere-like
space and overlapping with natural products (Figure 1d).
We are grateful to Dr. Amanda Hargrove and Zhengguo Cai for
assistance with PMI analysis and to Duke University for funding
this work. NMR spectra were acquired at Duke University NMR
Spectroscopy Center funded by NSF, NIH, NC Biotechnology
Center, and Duke University.
8.0
5.0
a
Drug Set
b
Natural Product Set
Macrocyclic NP Set
THP-MC Library Set
4.0
3.0
6.0
4.0
2.0
2.0
1.0
Conflict of interest
0.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-2.0
-4.0
-6.0
-8.0
The authors declare no conflict of interest.
Keywords: chemical diversity • macrocycles • natural products •
tandem oxidation/oxa-conjugate addition • tetrahydropyrans
PC 1
PC 1
6.0
4.0
1.0
0.9
0.8
0.7
0.6
0.5
rod
sphere
c
d
[1]
T. I. Oprea, C. G. Bologa, S. Brunak, A. Campbell, G. N. Gan, A.
Gaulton, S. M. Gomez, R. Guha, A. Hersey, J. Holmes, et al., Nat. Rev.
Drug Discovery 2018, 17, 317–332.
2.0
0.0
[2]
[3]
[4]
A. M. Virshup, J. Contreras-García, P. Wipf, W. Yang, D. N. Beratan, J.
Am. Chem. Soc. 2013, 135, 7296–7303.
-2.0
-4.0
-6.0
-8.0
E. A. Villar, D. Beglov, S. Chennamadhavuni, J. A. Porco, Jr., D.
Kozakov, S. Vajda, A. Whitty, Nat. Chem. Biol. 2014, 10, 723–731.
a) J. Mallinson, I. Collins, Future Med. Chem. 2012, 4, 1409–1438; b) F.
Giordanetto, J. Kihlberg, J. Med. Chem. 2014, 57, 278–295; c) A.
Whitty, L. A. Viarengo, M. Zhong, Org. Biomol. Chem. 2017, 15, 7729–
7735; d) S. Alihodžić, M. Bukvić, I. J. Elenkov, A. Hutinec, S. Koštrun, D.
Pešić, G. Saxty, L. Tomašković, D. Žiher, in Progress in Medicinal
Chemisry, Vol. 57 (Eds.: D. R. Witty, B. Cox), Elsevier, 2018, pp. 113–
233.
disk
-10.0
-12.0
I1/I3
PC 3
Figure 1. Principal component analysis (PCA) and principal moment of inertia
(PMI) plots. (a) PCA plot of PC1 vs. PC2; (b) PCA plot of PC1 vs. PC3; (c)
PCA plot of PC3 vs. PC2; (d) PMI plot illustrating the three-dimensional shape
diversity of the compound sets.
[5]
[6]
For recent examples, see: a) E. Comer, H. Liu, A. Joliton, A. Clabaut, C.
Johnson, L. B. Akella, L. A. Marcaurelle, Proc. Natl. Acad. Sci. U. S. A.
2011, 108, 6751–6756; b) F. Kopp, C. F. Stratton, L. B. Akella, D. S.
Tan, Nat. Chem. Biol. 2012, 8, 358–365; c) H. S. G. Beckmann, F. Nie,
C. E. Hagerman, H. Johansson, Y. S. Tan, D. Wilcke, D. R. Spring, Nat.
Chem. 2013, 5, 861–867; d) D. L. Usanov, A. I. Chan, J. P. Maianti, D.
R. Liu, Nat. Chem. 2018, 10, 704–714.
To demonstrate the potential of the macrocyclic library for
chemical probe and therapeutic development, we tested the
anticancer activity of the macrocycles in Huh7 cells (see the
Supporting Information for details). Additional biological
evaluations of the macrocyclic library in long non-coding RNAs,
transcription factors, patient-derived xenograft tumors, and
fungal infection are in progress. The assay data will be reported
in due course.
In summary, we report a strategy for the generation of a
structurally diverse macrocyclic library based on our allylic
oxidation/oxa-conjugate addition method. Cheminformatic
analyses demonstrate that our THP-containing macrocyclic
library shows a significant overlap with natural products. Insights
gained from such analyses will be useful in designing future
libraries that may probe more deeply into natural product-like
space. Since there exist a number of readily available chiral
epoxides and functionalized 1,3-dithianes, we expect that our
approach can be expanded to a larger size of macrocycle library
with a high level of structural diversity. Moreover, it is possible to
incorporate structurally more complex tetrahydropyrans into
macrocyclic backbone.[7] These macrocycles will be valuable
tools in developing chemical probes[16] to dissect important
biological processes as well as in targeting traditionally
challenging 'undruggable' drug targets.
For examples of THP-containing macrocyclic natural products, see: a)
H. Irschik, R. Jansen, K. Gerth, G. Höfle, H. Reichenbach, J. Antibiot.
1987, 40, 7–13; b) P. A. Horton, F. E. Koehn, R. E. Longley, O. J.
McConnell, J. Am. Chem. Soc. 1994, 116, 6015–6016; c) J.-i. Tanaka,
T. Higa, Tetrahedron Lett. 1996, 37, 5535–5538; d) V. R. Hegde, M. S.
Puar, P. Dai, M. Patel, V. P. Gullo, P. R. Das, R. W. Bond, A. T.
McPhail, Tetrahedron Lett. 2000, 41, 1351–1354; e) A. E. Wright, J. C.
Botelho, E. Guzmán, D. Harmody, P. Linley, P. J. McCarthy, T. P. Pitts,
S. A. Pomponi, J. K. Reed, J. Nat. Prod. 2007, 70, 412–416; f) A. R.
Pereira, C. F. McCue, W. H. Gerwick, J. Nat. Prod. 2010, 73, 217–220.
a) H. Kim, Y. Park, J. Hong, Angew. Chem., Int. Ed. 2009, 48, 7577–
7581; Angew. Chem. 2009, 121, 7713–7717; b) K. Lee, H. Kim, J.
Hong, Org. Lett. 2011, 13, 2722–2725; c) S. R. Byeon, H. Park, H. Kim,
J. Hong, Org. Lett. 2011, 13, 5816–5819; d) K. Lee, H. Kim, J. Hong,
Angew. Chem., Int. Ed. 2012, 51, 5735–5738; Angew. Chem. 2012,
124, 5833–5836; e) K. Lee, H. Kim, J. Hong, Eur. J. Org. Chem. 2012,
2012, 1025–1032.
[7]
[8]
[9]
a) I. V. P. Raj, A. Sudalai, Tetrahedron Lett. 2008, 49, 2646–2648; b) B.
M. Sharma, A. Gontala, P. Kumar, Eur. J. Org. Chem. 2016, 2016,
1215–1226.
I. Shiina, H. Fukui, A. Sasaki, Nat. Protoc. 2007, 2, 2312–2317.
[10] The yield for the macrolatonization reaction was highly dependent on
the length, rigidity, and substituent pattern of w-hydroxy carboxylic
acids; see the Supporting Information for details.
[11] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001,
40, 2004–2021.
[12] The yield for the Cu(I)-catalyzed azide/alkyne cycloaddition reaction
was dependent on the length of azide akynes. We also observed the
Acknowledgements
This article is protected by copyright. All rights reserved.