O rP gl ea na si ce &d Bo i on mo to al e dc juu l sa tr mC ha er mg i ins ts ry
Page 4 of 6
ARTICLE
Journal Name
Table 3 Mechanistic Investigations
compatible with a range of cyclic ethers.
D
A
OI
r
:
e
1
a
0
c
.1
t
0
i
3
o
9
n
/D
m
0
e
O
c
B
h
0
a
0
n
7
i
29C
s
m
O
O
reaction condition
O
involving a radical pathway via a peroxide species as
intermediates has been further supported by control
experiments. This protocol is successfully applied for the direct
synthesis of bioactive molecule 3-butylphthalide.
1a
2a
Entry
Condition
Result
No reaction
1
No base
No Cat. A
or Argon atm.
2Me-THF:H
80µL:20µL)
TEMPO or BHT (1 equiv.)
CuCl ((1 equiv.)
Catalase (70 mg)
18O
atm.
Conflicts of interest
There are no conflicts to declare.
2
3
4
No reaction
No reaction
N
2
O18 (10 equiv.; >98% unlabeled, no 18
O
2
9
Acknowledgements
5
<10%
6
7
8
2
No reaction
13%
82% 18O incorporation
Financial support from the Science and Engineering Research
Board (SERB), New Delhi (EEQ/2016/000203) is gratefully
acknowledged. T.T.(PDF/2016/002733), S.K.D., and P.K. are
thankful to SERB and UGC, New Delhi, for their fellowships.
2
On the basis of these experimental data and literature
precedents1
2,13,17
a plausible mechanism of this transformation
is proposed (Scheme 3). Deprotonation of acidic proton of A by
DMAP leads to a dienolate species I which captures triplet
Notes and references
1
(a) E. Napolitano, Org Prep Proced Int. 1997, 29, 631; (b) R.
Karmakar, P. Pahari and D. Mal, Chem. Rev. 2014, 114, 6213;
(c) A. León, M. Del-Ángel, J. L. Ávila and G. Delgado in
Progress in the Chemistry of Organic Natural Products 104,
Springer, Berlin, 2017, pp. 127-246; (d) P. Saikia and S. Gogoi.
Adv. Synth. Catal. 2018, 360, 2063.
1
9
oxygen to form peroxide species and then its homolytic
cleavage leads to radical species II and III. Next, H-atom
abstraction of 1a by either the peroxy radical III or alkoxy
radical II leads to radical species V [Formation of intermediate
V was confirmed by the HRMS analysis, detection of V-TEMPO
adduct] which reacts with oxygen to give hydroperoxide
intermediate VI that can collapse to product 2a by further H-
removal by base. Alternatively, single electron transfer from
the substrate 1a may give a radical cation that can undergo H-
atom transfer to give an oxocarbenium ion which on
recombination with peroxy radical III provides intermediate VI
2
3
J. Muzart, Tetrahedron Lett.,1987, 28, 2131; b) S. Yamazaki,
Org. Lett.,1999, 1, 2129.
(a) N. Komiya, T. Naota and S. I. Murahashi,
TetrahedronLett., 1996, 37, 1633; (b) F. Wang, G. Y. Yang, W.
Zhang, W. H. Wu and J. Xu, Chem. Commun., 2003, 1172; (c)
H. Tanaka, K.Oisaki and M. Kanai, Synlett, 2017, 28, 1576.
(a) E. Modica, G. Bombieri, D. Colombo; N. Marchini, F.
Ronchetti, A. Scala and L. Toma, Eur. J. Org. Chem., 2003,
2964; (b) Y. Yang and H. Ma, Tetrahedron Lett., 2016, 57,
4
(see SI).
5
278.
5
6
(a) A. J. Catino, J. M. Nichols, H. Choi, S. Gottipamula and M.
P.Doyle, Org. Lett., 2005, 7, 5167; (b) Y. Wang, Y. Kuang and
Y. Wang, Chem. Commun., 2015, 51, 5852.
(a) S. I. Murahashi, T. Naota and N. Komiya, Tetrahedron
Lett., 1995, 36, 8059; (b) G. Blay, I. Fernández, T. Giménez, J.
R. Pedro, R. Ruiz, E. Pardo, F. Lloret and M. C. Munoz, Chem.
Commun., 2001, 2102.
(a) I. Bauer and H.-J. Knölker, Chem. Rev., 2015, 115, 3170;
(b) M. Nakanishi and C. Bolm, Adv. Synth.Catal., 2007, 349,
861; (c) A.Gonzalez-de-Castro, C. M. Robertson and J. Xiao, J.
Am. Chem. Soc., 2014, 136, 8350.; (d) C. Hong, J. Ma, M. Li, L.
Jin, X. Hu, W. Mo, B. Hu, N. Sun and Z.Shen, Tetrahedron,
2017, 73, 3002.
O
O
II
1a
O
OOH
III
O2
or H2O2
IV
H
O
H
O
O
7
O
O
O
I
O
O
O2
O
O
I
DMAP
V
VI
Observed as TEMPO-adduct
in HRMS]
2a
[
D M A P
O
O
8
9
N. V. Tzouras, I. K. Stamatopoulos, A. T. Papastavrou, A. Liori
and G. C. Vougioukalakis, Coord. Chem. Rev., 2017, 343, 25.
(a) H. Sterckx, J. De Houwer, C. Mensch,; W. Herrebout, K. A.
Tehrani and B. U. W. Maes, Beilstein J. Org. Chem., 2016, 12,
A
Scheme 3 Plausible Mechanism.
1
44; (b) H. Wang, Z. Wang, H. Huang, J. Tan and K. Xu, Org.
Lett., 2016, 18, 5680; (c) J.-S. Li, F. Yang, Q. Yang, Z.-W. Li, G.-
Q. Chen, Y.-D. Da, P.-M. Huang, C. Chen, Y. Zhang and L.-Z.
Huang, Synlett, 2017, 28, 994; for a catalyst free aerobic
oxidation under 0.5 MPa oxygen, see (d) X. Tian, X. Cheng, X.
Yang, Y.-L. Ren, K. Yao, H. Wang and J. Wang, Org. Chem.
Front., 2019, 6, 952.
0 (a) Z. Zhang, Y. Gao, Y. Liu, J. Li, H. Xie, H. Li and W. Wang,
Org. Lett., 2015, 17, 5492; also see, (b) P. P.Pradhan, J. M.
Bobbitt and W. F. Bailey, J. Org. Chem., 2009, 74, 9524.
Conclusions
In summary, we have developed an efficient and versatile
synthetic strategy for direct oxidation of various isochromans
and pthalans to corresponding lactones by employing
inexpensive α-angelica lactone as catalyst. Moreover, this
methodology utilizes oxygenas the green oxidant as well
1
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins