The Journal of Physical Chemistry B
Article
(3) Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic
Interactions. J. Chem. Soc., Perkin Trans. 2001, 2, 651−669.
(4) Waters, M. L. Aromatic Interactions in Model Systems. Curr.
Opin. Chem. Biol. 2002, 6, 736−741.
Stability and NLO Properties by Density Functional Theory
Calculations. Spectrochim. Acta, Part A 2012, 95 (2012), 354−368.
(25) Velavan, R.; Sureshkumar, P.; Sivakumar, K.; Natarajan, S.
Organic Compounds − Vanillin I. Acta Crystallogr. 1995, C51, 1131−
1133.
(26) Crupi, V.; Fontana, A.; Giarola, M.; Guella, G.; Majolino, D.;
Mancini, I.; Mariotto, G.; Paciaroni, A.; Rossi, B.; Venuti, V.
Cyclodextrin-Complexation Effects on the Low-frequency Vibrational
Dynamics of Ibuprofen by Combined Inelastic Light and Neutron
Scattering Measurements. J. Phys. Chem. B 2013, 117 (14), 3917−
3926.
(27) Hedoux, A.; Decroix, A.; Guinet, Y.; Paccou, L.; Derollez, P.;
Descamps, M. Low- and High-Frequency Raman Investigations on
Caffeine: Polymorphism, Disorder and Phase Transformation. J. Phys.
Chem. B 2011, 115, 5746−5753.
(28) Zeng, Z.; Fang, Y.; Ji, H. Side Chain Influencing the Interaction
Between β-Cyclodextrin and Vanillin. Flavour Fragrance J. 2012, 27,
378−385.
(5) Szejtli, J. Introduction and General Overview of Cyclodextrin
Chemistry. Chem. Rev. 1998, 98, 1743−1753.
(6) Martin Del Valle, E. M. Cyclodextrins and Their Uses: a Review.
Process Biochem. 2004, 39, 1033−1046.
(7) FRIDGE (Fund for Research into Industrial Development,
Growth and Equity). Study Into the Establishment of an Aroma and
Fragrance Fine Chemicals Value Chain in South Africa. Part Three:
Aroma Chemicals Derived From Petrochemical Feedstocks. 2004.
Triumph Ventur Capital (Pty) Limited.
(8) Kumar, R.; Sharma, P. K.; Mishra, P. S. A Review on the Vanillin
Derivatives Showing Various Biological Activities. Int. J. PharmTech
Res. 2012, 4 (1), 266−279.
1
(9) Bogdan, M.; Floare, C. G.; Pîrnau
̆
, A. H NMR Investigation of
Self-Association of Vanillin in Aqueous Solution. J. Phys.: Conf. Ser.
2009, 182, 012002.
(29) Rossi, B.; Verrocchio, P.; Viliani, G.; Mancini, I.; Guella, G.;
Rigo, E.; Scarduelli, G.; Mariotto, G. Vibrational Properties of
Ibuprofen-Cyclodextrin Inclusion Complexes Investigated by Raman
Scattering and Numerical Simulation. J. Raman Spectrosc. 2009, 40 (4),
453−458.
(10) Divakar, S. Structure of a β-Cyclodextrin-Vanillin Inclusion
Complex. J. Agric. Food Chem. 1990, 38 (4), 940−944.
̆
(11) Pîrnau, A.; Bogdan, M.; Floare, C. G. NMR Spectroscopic
Characterization of β-Cyclodextrin Inclusion Complex with Vanillin. J.
Phys.: Conf. Ser. 2009, 182, 012013.
(12) Ishikawa, H.; Kuwano, A.; Matsumoto, K. Complexation of
Vanillin and Ethylvanillin with α-, β-, and γ-Cyclodextrin. J. Fac. Agric.,
Kyushu Univ. 2007, 52 (1), 87−90.
(13) kayaci, F.; Uyar, T. Solid Inclusion Complexes of Vanillin with
Cyclodextrins: Their Formation, Characterization, and High-Temper-
ature Stability. J. Agric. Food Chem. 2011, 59, 11772−11778.
(14) Karathanos, V. T.; Mourtzinos, I.; Yannakopoulou, K.;
Andrikopoulos, N. K. Study of the solubility, Antioxidant Activity
and Structure of Inclusion Complex of Vanillin with β-Cyclodextrin.
Food Chem. 2007, 101, 652−658.
(15) Cohen, Y.; Avram, L.; Frish, L. Diffusion NMR Spectroscopy in
Supramolecular and Combinatorial Chemistry: An Old Parameter −
New Insights. Angew. Chem., Int. Ed. 2005, 44, 520−554.
(16) Pessine, F. B. T.; Calderini, A.; Alexandrino, G. L. Review:
Cyclodextrin Inclusion Complexes Probed by NMR Techniques. In
Magnetic Resonance Spectroscopy; Kim, D.-H., Ed.; InTech: Shanghai,
China, 2012. ISBN: 978-953-51-0065-2.
(17) Price, W. S. Pulsed-Field Gradient Nuclear Magnetic Resonance
as a Tool for Studying Translational Diffusion: Part I. Basic Theory.
Concepts Magn. Reson. 1997, 9, 299−336.
(18) Sinnaeve, D. The Stejskal-Tanner Equation Generalized for Any
Gradient Shape − An Overview of Most Pulse Sequences Measuring
Free Diffusion. Concepts Magn. Reson. 2012, 40A (2), 39−65.
(19) Loftsson, T.; Masson, M.; Brewster, M. E. Self-Association of
̀
Cyclodectrins and Cyclodextrin Complexes. J. Pharm. Sci. 2004, 93,
1091−1099.
(20) Bonini, M.; Rossi, S.; Karlsson, G.; Almgren, M.; Lo Nostro, P.;
Baglioni, P. Self-Assembly of β-Cyclodextrin in Water. Part 1: Cryo-
TEM and Dynamic and Static Light Scattering. Langmuir 2006, 22,
1478−1484.
̀
(21) Guerrero-Martìnez, A.; Gonzalez-Gaitano, G.; Vinas, M. H.;
Tardajos, G. Inclusion Complexes between β-Cyclodextrin and a
Gemini Surfactant in Aqueous Solution: An NMR Study. J. Phys.
Chem. B 2006, 110, 13819−13828.
(22) Crupi, V.; Majolino, D.; Paciaroni, A.; Rossi, B.; Stancanelli, R.;
Venuti, V.; Viliani, G. The Effect of Hydrogen Bond on the Vibrational
Dynamics of Genistein Free and Complexed with b-Cyclodextrins. J.
Raman Spectrosc. 2010, 41 (7), 764−770.
(23) Crupi, V.; Majolino, D.; Venuti, V.; Guella, G.; Mancini, I.;
Rossi, B.; Verrocchio, P.; Viliani, G.; Stancanelli, R. Temperature Effect
on the Vibrational Dynamics of Cyclodextrin Inclusion Complexes:
Investigation by FTIR-ATR Spectroscopy and Numerical Simulation.
J. Phys. Chem. A 2010, 114 (25), 6811−6817.
(24) Balachandran, V.; Parimala, K. Vanillin and Isovanillin:
Comparative Vibrational Spectroscopic Studies, Conformational
I
dx.doi.org/10.1021/jp504406j | J. Phys. Chem. B XXXX, XXX, XXX−XXX