I. Chiyanzu et al. / Journal of Molecular Catalysis B: Enzymatic 63 (2010) 109–115
115
Table 3
Kinetic parameters for soluble and Eupergit®C (EDAC)-immobilized G. pallidus RAPc8 NHase.
Vmax (ꢀmol mL 1 min
−
−1
)
Km (mM)
kcat (min
−1
)
kcat/Km (mM min
−1
−1
)
R2
Substrate
2
3
4
3
-Cyanopyridine
-Cyanopyridine
-Cyanopyridine
-Cyanopyridine (immobilized NHase)
33.8
48.1
15.3
4.5
5.3
10.2
8.7
26598
37777
12078
3543
5018
3703
1388
204
0.9894
0.9951
0.9802
0.9830
17.3
in inactive or substrate-blocked configurations, and to diffusional
limitations typically associated with the use of high surface area
porous immobilization matrices [41–43].
[16] F.B. Cooling, S.K. Fager, R.D. Fallon, P.W. Folsom, F.G. Gallagher, J.E. Gavagan, E.C.
Hann, F.E. Herkes, R.L. Phillips, A. Sigmund, L.W. Wagner, W. Wu, R. DiCosimo,
J. Mol. Cataly. B: Enzym 11 (2001) 295–306.
[
17] R.A. Pereira, D. Graham, F.A. Rainey, D.A. Cowan, Extremophiles 2 (1998)
47–357.
3
[
[
[
18] R.A. Cameron, M. Sayed, D.A. Cowan, Biochim. Biophys. Acta 1725 (2005) 35–46.
19] R.A. Cramp, D.A. Cowan, Biochim. Biophys. Acta 1431 (1999) 249–260.
20] T.A. Bishop, T. Sewell, Biochem. Biophys. Res. Commun. 343 (2006) 319–325.
4
. Conclusion
The G. pallidus RAPc8 NHase, previously found to be active on
[21] M. Bradford, Anal Biochem. 72 (1976) 248–254.
[
[
[
22] K. Won, S. Kim, K. Kim, W.H. Park, S. Moon, Process Dev. 40 (2005) 2149–2154.
23] G. Spagna, P.G. Pifferi, M. Tramontini, J. Mol. Catal. A: Chem. 101 (1995) 99–105.
24] L. Blasi, L. Longo, G. Vasapollo, R. Cingolani, R. Rinaldi, T. Rizzello, R. Acierno, M.
Maffia, Enzyme Microb. Technol. 36 (2005) 818–823.
cyano-pyridines as substrates, is a potentially useful enzyme for
production of nicotinamide and related aromatic amides. However,
its relatively poor thermostability and notable substrate inhibi-
tion are disadvantageous in this regard. The results presented
above confirm that immobilization of the NHase lead to consid-
erably enhanced thermostability and reduced substrate inhibition.
Further, the retention of the activity of the immobilized NHase
biocatalyst in repeated reactions and in the presence of organic
solvents as demonstrated here provide evidence of its potential
usefulness.
[25] Z. Knezevic, N. Milosavic, D. Bezbradica, Z. Jakovljevic, R. Prodanovic, Biochem.
Eng. J. 30 (2006) 269–278.
[
26] L. Wilson, L. Betancor, G. Fernández-Lorente, M. Fuentes, A. Hidalgo, J.M. Guisan,
B.C.C. Pessela, R. Fernández-Lafuente, Biomacromolecules 5 (2004) 814–817.
[27] L. Betancor, A. Hidalgo, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente,
J.M. Guisan, Biotechnol. Prog. 19 (2003) 763–767.
[
28] R. Fernández-Lafuente, J.M. Guisan, O. Hernández-Ruiz, C. Mateo, M. Terre, J.
Alonso, J. Garcia-Lopez, M.A. Moreno, J.M. Guisan, J. Mol. Catal. B: Enzym. 11
(2001) 633–638.
[
29] W. Huang, J. Jia, J. Cumming, M. Nelson, G. Schneider, Y. Lindqvist, Structure 5
(
1997) 691–699.
Acknowledgement
[
[
[
[
[
[
31] L.A.S. Gorman, J.S. Dordick, Biotechnol. Bioeng. 39 (1992) 392–397.
32] M.C. Parker, D. Barry, Biocatal. Biotransform. 10 (1994) 269–277.
33] M. Lee, J. Dordick, Curr. Opin. Biotechnol. 13 (2002) 376–384.
34] Tsekoa, T. Ph.D. Thesis. University of Western Cape (2005).
36] P.J. Halling, Curr. Opin. Chem. Biol. 4 (2000) 74–80.
The financial support of the National Research Foundation (NRF)
of South Africa is gratefully acknowledged.
41] P.G. Pifferi, M. Tramontini, A. Malacarne, Biotechnol. Bioeng. 33 (1989)
1
258–1266.
References
[
[
42] P. Lozano, A. Manjon, J.L. Iborra, M. Cànovas, T. Romojaro, Enzyme Microb.
Technol. 12 (1999) 499–505.
43] M.D. Busto, K.E. Garcia-Tramontin, N. Ortega, M. Perez, Bioresource Technol. 97
[
[
1] M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 10 (1992) 402–408.
2] T. Nagasawa, H. H.Shimizu, H. Yamada, Appl. Microbiol. Biotechnol. 40 (1993)
(
2005) 1477–1483.
1
89–195.
[
[
[
44] R. Padmakumar, P. Oriel, Appl. Biochem. Biotechnol. 79 (1999) 671–679.
45] R. Cramp, M. Gilmour, D.A. Cowan, Microbiology 143 (1997) 2313–2320.
46] Y. Takashima, Y. Yamada, S. Mitsuda, J. Ind. Microbiol. Biotechnol. 20 (1998)
[
[
[
[
[
[
3] S. Thomas, R. Dicosimo, V. Nagarajan, Trends Biotechnol. 20 (2002) 238–242.
4] J.M. Wyatt, C.K. Knowles, Biodegradation 6 (1995) 93–107.
5] H. Yamada, M. Kobayashi, Biosci. Biotech. Biochem. 60 (1996) 1391–1400.
6] Y. Ashina, M. M.Suto, Bioprocess Technol. 16 (1993) 91–107.
7] M. Kobayashi, S. Shimizu, Nature Biotechnol. 16 (1998) 733–736.
8] M.B. Martinez, M.C. Flickinger, G.L. Nelsestuen, Biochemistry 35 (1996)
220–226.
[
47] T. Yamaki, T. Oikawa, K. Ito, T. Nakamura, J. Ferment. Bioeng. 83 (1997) 474–477.
1
179–1186.
Further reading
[
9] T. Nagasawa, H. Yamada, Pure Appl. Chem. 62 (1990) 1441–1444.
[
10] M. Cantarella, L. Cantarella, A. Gallifuoco, R. Frezzini, A. Spera, F. Alfani, J. Mol.
[
[
[
[
30] D.A. Cowan, R. Cameron, T. Tsekoa, Adv. Appl. Microbiol. 52 (2003) 123–158.
35] R.K. Owusu, N. Berthalon, Food Chem. 48 (1993) 223–235.
37] T. Nagasawa, H. Yamada, Pure Appl. Chem. 67 (1995) 1241–1256.
38] K. Pape zˇ ová, T. N e˘ mec, R. Chaoupková, G. Zden e˘ k, J. Chromatogr. 1150 (2007)
Cataly. B: Enzym. 29 (2004) 105–113.
[
[
11] A. Zaks, Curr. Opin. Chem. Biol. 5 (2001) 130–136.
12] Y. Takashima, Y. Yamaga, S. Mitsuda, J. Ind. Microbiol. Biotechnol. 20 (1998)
2
20–226.
327–331.
[
[
13] L.Q. Cao, L. van Langen, R.A. Sheldon, Curr. Opin. Biotechnol. 14 (2003) 387–394.
14] D. Graham, R.A. Pereira, D. Barfield, D.A. Cowan, Enzyme Microb. Technol. 26
[
[
39] R.B. Silverman, The Organic Chemistry of Enzyme-catalyzed Reactions, Academic
Press, New York, 2000.
40] A. Miyanaga, S. Fushinobu, K. Ito, T. Wakagi, Biochem. Biophys. Res. Commun.
(
2000) 368–373.
[15] E.C. Hann, A. Eisenberg, S.K. Fager, N.E. Perkins, F.G. Gallagher, S.M. Cooper, J.E.
288 (2001) 1169–1174.
Gavagan, B. Stieglitz, S.M. Hennessey, R. DiCosimo, Bioorg. Med. Chem. 7 (1999)
2
239–2245.