Organic & Biomolecular Chemistry
Paper
Japan and Takeda Science Foundation to K. M. We also 24 R. Tucker, P. Katira and H. Hess, Nano Lett., 2008, 8, 221–
acknowledge the support from Dynamic Alliance for Open 226.
Innovation Bridging Human, Environment and Materials 25 K. R. S. Kumar, T. Kamei, T. Fukaminato and N. Tamaoki,
(Five-Star Alliance) of MEXT.
ACS Nano, 2014, 8, 4157–4165.
26 K. R. S. Kumar, A. S. Amrutha and N. Tamaoki, Lab Chip,
2016, 16, 4702–4709.
27 A. S. Amrutha, K. R. S. Kumar, T. Kikukawa and
N. Tamaoki, ACS Nano, 2017, 11, 12292–12301.
28 N. Perur, M. Yahara, T. Kamei and N. Tamaoki, Chem.
Commun., 2013, 49, 9935–9937.
29 H. M. Menezes, M. J. Islam, M. Takahashi and N. Tamaoki,
Org. Biomol. Chem., 2017, 15, 8894–8903.
30 I. K. Lednev, T. Q. Ye, R. E. Hester and J. N. Moore, J. Phys.
Chem., 1996, 100, 13338–13341.
31 T. Nägele, R. Hoche, W. Zinth and J. Wachtveitl, Chem.
Phys. Lett., 1997, 272, 489–495.
Notes and references
1 R. D. Vale and R. A. Milligan, Science, 2000, 288, 88–95.
2 M. Yoshida, E. Muneyuki and T. Hisabori, Nat. Rev. Mol.
Cell Biol., 2001, 2, 669–677.
3 M. Schliwa, Molecular motors, Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim, Germany, 2003.
4 R. D. Vale, T. S. Reese and M. P. Sheetz, Cell, 1985, 42, 39–
50.
5 J. Howard, Annu. Rev. Physiol., 1996, 58, 703–729.
6 V. Mermall, P. L. Post and M. S. Mooseker, Science, 1998, 32 A. Barth, K. Hauser, W. Mäntele, J. E. T. Corrie and
279, 527–533. D. R. Trentham, J. Am. Chem. Soc., 1995, 117, 10311–10316.
7 S. J. Kron and J. A. Spudich, Proc. Natl. Acad. Sci. U. S. A., 33 F. Jon Kull, E. P. Sablin, R. Lau, R. J. Fletterick and
1986, 83, 6272–6276.
R. D. Vale, Nature, 1996, 380, 550–555.
8 A. Goel and V. Vogel, Nat. Nanotechnol., 2008, 3, 465–475.
34 A. Weber, J. Gen. Physiol., 1969, 53, 781–791.
9 S. Aoyama, M. Shimoike and Y. Hiratsuka, Proc. Natl. Acad. 35 S. A. Cohn, A. L. Ingold and J. M. Scholey, J. Biol. Chem.,
Sci. U. S. A., 2013, 110, 16408–16413. 1989, 264, 4290–4297.
10 S. J. Kron and J. A. Spudich, Proc. Natl. Acad. Sci. U. S. A., 36 T. Shimizu, K. Furusawa, S. Ohashi, Y. Y. Toyoshima,
1986, 83, 6272–6276.
11 M. G. L. van den Heuvel, M. P. de Graaff and C. Dekker,
Science, 2006, 312, 910–914.
12 M. Uppalapati, Y. M. Huang, T. N. Jackson and
W. O. Hancock, Small, 2008, 4, 1371–1381.
13 E. Kim, K. E. Byun, D. S. Choi, D. J. Lee, D. H. Cho,
M. Okuno, F. Malik and R. D. Vale, J. Cell Biol., 1991, 112,
1189–1197.
37 H. D. White, B. Belknap and W. Jiang, J. Biol. Chem., 1993,
268, 10039–10045.
38 E. Pate, K. Franks-Skiba, H. White and R. Cooke, J. Biol.
Chem., 1993, 268, 10046–10053.
B. Y. Lee, H. Yang, J. Heo, H. J. Chung, S. Seo and S. Hong, 39 S. Higashi-Fujime and T. Hozumi, Biochem. Biophys. Res.
Nanotechnology, 2013, 24, 195102–195107. Commun., 1996, 221, 773–778.
14 H. Kato, E. Muto, T. Nishizaka, T. Iga, K. Kinosita JR and 40 S. M. Frisbie, J. M. Chalovich, B. Brenner and L. C. Yu,
S. Ishiwata, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 9602–
9606.
15 G. Mihajlović, N. M. Brunet, J. Trbović, P. Xiong, S. von
Biophys. J., 1997, 72, 2255–2261.
41 M. Regnier, D. M. Lee and E. Homsher, Biophys. J., 1998,
74, 3044–3058.
Molnár and P. B. Chase, Appl. Phys. Lett., 2004, 85, 1060– 42 M. Regnier and E. Homsher, Biophys. J., 1998, 74, 3059–
1062. 3071.
16 L. Ionov, M. Stamm and S. Diez, Nano Lett., 2006, 6, 1982– 43 I. Amitani, T. Sakamoto and T. Ando, Biophys. J., 2001, 80,
1987. 379–397.
17 F. Wang, N. M. Brunet, J. R. Grubich, E. A. Bienkiewicz, 44 L. Farhadi, C. F. Do Rosario, E. P. Debold, A. Baskaran and
T. M. Asbury, L. A. Compton, G. Mihajlović, V. F. Miller and
P. B. Chase, J. Biomed. Biotechnol., 2011, 2011, 435271.
18 T. Korten, W. Birnbaum, D. Kuckling and S. Diez, Nano
Lett., 2012, 12, 348–353.
19 N. M. Brunet, G. Mihajlović, K. Aledealat, F. Wang,
P. Xiong, S. von Molnár and P. B. Chase, J. Biomed.
Biotechnol., 2012, 2012, 657523.
J. L. Ross, Front. Phys., 2018, 6, 75.
45 Usually at higher concentration of AzoTPs (>3.5 mM), the
microtubules were detached form kinesin and floating in
the flow cell. In case of 1e, the detachment of microtubules
was observed at >2.0 mM concentration. Therefore, the
microtubule gliding velocity was shown up to 3.0 mM for
all AzoTP derivatives except for 1e (up to 2.0 mM).
20 C. Reuther, R. Tucker, L. Ionov and S. Diez, Nano Lett., 46 M. Castoldi and A. V. Popov, Protein Expression Purif., 2003,
2014, 14, 4050–4057. 32, 83–88.
21 N. M. Brunet, P. B. Chase, G. Mihajlović and B. Schoffstall, 47 S. S. Margossian and S. Lowey, Methods Enzymol., 1982, 85,
Arch. Biochem. Biophys., 2014, 552–553, 11–20. 55–71.
22 H. Higuchi, E. Muto, Y. Inoue and T. Yanagida, Proc. Natl. 48 J. D. Pardee and J. A. Spudich, Methods Enzymol., 1982, 85,
Acad. Sci. U. S. A., 1997, 94, 4395–4400. 164–181.
23 H. Hess, J. Clemmens, D. Qin, J. Howard and V. Vogel, 49 O. Knob, T. Stutzle and T. E. Exner, J. Chem. Inf. Model.,
Nano Lett., 2001, 1, 235–239.
2009, 49, 84–96.
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem., 2019, 17, 53–65 | 65