Organic Letters
Letter
According to the above results, together with previous
reports,23 a tentative pathway for the generation of 2-
trifluoroalkylated quinolines was proposed as depicted in
Scheme 6. Initially, trifluoroacetamide 13 was generated in situ
Education Department of Shaanxi Province (18JK0110). We
thank Dr. Yifan Kang at Shaanxi University of Science and
Technology for X-ray crystallographic assistance.
REFERENCES
■
Scheme 6. Proposed Mechanism
(1) (a) Mu
̈
ller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Nie, J.; Guo, H.; Cahard, D.; Ma, J. Chem. Rev. 2011, 111, 455.
́
́
(c) Wang, J.; Sanchez-Rosello, M.; Acea, J. L.; Pozo, C. D.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem.
Rev. 2014, 114, 2432. (d) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D.
Chem. Rev. 2015, 115, 826.
(2) (a) Jayaprakash, S.; Iso, Y.; Wan, B.; Franzblau, S.; Kozikowski,
A. P. ChemMedChem 2006, 1, 593. (b) Mao, J.; Yuan, H.; Wang, Y.;
Wan, B.; Pieroni, M.; Huang, Q.; Breemen, R. B. V.; Kozikowski, A.
P.; Franzblau, S. G. J. Med. Chem. 2009, 52, 6966. (c) Billah, M.;
Cooper, N.; Cuss, F.; Davenport, R. J.; Dyke, H. J.; Egan, R.; Ganguly,
A.; Gowers, L.; Hannah, D. R.; Haughan, A. F.; Kendall, H. J.; Lowe,
C.; Minnicozzi, M.; Montana, J. G.; Naylor, R.; Oxford, J.; Peake, J.
C.; Piwinski, J. J.; Warneck, J. B. H. Bioorg. Med. Chem. Lett. 2002, 12,
1621. (d) Mueller, C. E.; Pegurier, C.; Deligny, M. L. R.; El-Tayeb,
A.; Hockemeyer, J.; Ledecq, M.; Mercier, J.; Provins, L.; Boshta, N.
M.; Bhattarai, S.; Namasivayam, V.; Funke, M.; Schwach, L.; Gollos,
S.; Von Laufenberg, D.; Barre, A. WO 2018122232, 2018. (e)
Calabrese, A. A.; Duncton, M. A. J.; Futatsugi, K.; Hirano, M.;
Nagayama, S. WO 2008059370, 2008. (f) Babaoglu, K.; Bjornson, K.
L.; Hrvatin, P.; Lansdon, E.; Link, J. O.; Liu, H.; McFadden, R.;
Mitchell, M. L.; Qi, Y.; Roethle, P. A.; Xu, L. WO 2013103724, 2013.
(3) (a) Evans, P.; Hogg, P.; Grigg, R.; Nurnabi, M.; Hinsley, J.;
Sridharan, V.; Suganthan, S.; Korn, S.; Collard, S.; Muir, J. E.
Tetrahedron 2005, 61, 9696. (b) Pearson, D. M.; Conley, N. R.;
Waymouth, R. M. Organometallics 2011, 30, 1445.
(4) For selected recent examples, see: (a) Amii, H.; Kishikawa, Y.;
Uneyama, K. Org. Lett. 2001, 3, 1109. (b) Yanai, H.; Mimura, H.;
Kawada, K.; Taguchi, T. Tetrahedron 2007, 63, 2153. (c) Isobe, A.;
Takagi, J.; Katagiri, T.; Uneyama, K. Org. Lett. 2008, 10, 2657.
(d) Chen, Z.; Zhu, J.; Xie, H.; Li, S.; Wu, Y.; Gong, Y. Chem.
Commun. 2010, 46, 2145. (e) Dong, X.; Xu, Y.; Liu, J.; Hu, Y.; Xiao,
T.; Zhou, L. Chem. - Eur. J. 2013, 19, 16928. (f) Zheng, Q.; Luo, P.;
Lin, Y.; Chen, W.; Liu, X.; Zhang, Y.; Ding, Q. Org. Biomol. Chem.
2015, 13, 4657. (g) Zheng, Q.; Ding, Q.; Liu, X.; Zhang, Y.; Peng, Y.
J. Organomet. Chem. 2015, 783, 77. (h) Han, F.; Yang, W.; Zhao, A.;
Zheng, R.; Ji, C.; Liu, X.; Liu, G.; Chen, C. Asian J. Org. Chem. 2018,
7, 1124.
from 2-vinylaniline and TFA. Tautomerization provided iminol
A, which delivered B via acid-mediated dehydration. The
double bond underwent an intramolecular electrophilic
addition to the nitrilium to give carbocation C. Finally,
deprotonations and aromatization provided 3a.
In summary, a new and practical approach for synthesis of 2-
fluoroalkylated quinolines from 2-vinylanilines and polyfluor-
oalkanoic acids has been developed. In comparison to previous
synthetic methods, this strategy employs readily available
perfluoroalkanoic acids as both C1 synthons and direct fluorine
sources, leading to a series of F-containing (CF3, C2F5, C3F7,
CF2H, CF2Cl, and CF2Br) quinolines with excellent functional
group tolerance. Furthermore, this newly established method-
ology represents a rare example of an organofluorination under
catalyst- and additive-free conditions. Further investigations
into the scope and applications of this new process are
currently underway in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectral data (PDF)
(5) (a) Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135,
12584. (b) Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-
Accession Codes
́
́
Adan, E. C.; Novak, P.; Grushin, V. V. J. Org. Chem. 2013, 78, 11126.
(6) Lin, X.; Li, Z.; Han, X.; Weng, Z. RSC Adv. 2016, 6, 75465.
(7) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.
(8) Nishida, T.; Ida, H.; Kuninobu, Y.; Kanai, M. Nat. Commun.
2014, 5, 3387.
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(9) Stephens, D. E.; Chavez, G.; Valdes, M.; Dovalina, M.; Arman,
H. D.; Larionov, O. V. Org. Biomol. Chem. 2014, 12, 6190.
(10) Shirai, T.; Kanai, M.; Kuninobu, Y. Org. Lett. 2018, 20, 1593.
(11) (a) Tung, T. T.; Christensen, S. B.; Nielsen, J. Chem. - Eur. J.
2017, 23, 18125. (b) Lu, C.; Gu, Y.; Wu, J.; Gu, Y.; Shen, Q. Chem.
Sci. 2017, 8, 4848.
(12) (a) McReynolds, K. A.; Lewis, R. S.; Ackerman, L. K. G.;
Dubinina, G. G.; Brennessel, W. W.; Vicic, D. A. J. Fluorine Chem.
2010, 131, 1108. (b) Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.;
Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F.; Neumann, H.;
Brîckner, A.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 2782.
(13) Fiederling, N.; Haller, J.; Schramm, H. Org. Process Res. Dev.
2013, 17, 318.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
́
(14) Lopez, S. E.; Salazar, J. J. Fluorine Chem. 2013, 156, 73.
(15) For selected recent examples, see: (a) Dash, J.; Lechel, T.;
Reissig, H. U. Org. Lett. 2007, 9, 5541. (b) Lechel, T.; Dash, J.;
Hommes, P.; Lentz, D.; Reissig, H. U. J. Org. Chem. 2010, 75, 726.
(c) Zhu, J.; Xie, H.; Chen, Z.; Li, S.; Wu, Y. Chem. Commun. 2011, 47,
ACKNOWLEDGMENTS
This work was supported by the NSFC (21801159), the China
Postdoctoral Science Foundation (2018M640944), and the
■
D
Org. Lett. XXXX, XXX, XXX−XXX