Page 7 of 10
ACS Catalysis
Pharmaceuticals that Contain Polycyclic Hydrocarbon Scaffolds.
Chem. Soc. Rev. 2015, 44, 7737–7763.
reported to give as low as 6:1 selectivity for C1 with an alkene trap
(see ref. 9h). Tetrabutylammonium decatungstate has been reported to
give 1:1.3 selectivity favoring C2 (see ref. 9j) and up to 1:4 selectivity
for the 2º position of adamantanone (see ref. 9q).
1
2
3
4
5
6
7
8
(9) For representative examples, see: (a) Tabushi, I.; Fukunishi, K.
Free Radical Alkylation of Adamantanes. J. Org. Chem. 1974, 39,
3748–3750. (b) Tabushi, I.; Kojo, S.; Fukunishi, K. Mechanism of
Photoacetylation of Substituted Adamantanes. J. Org. Chem. 1978,
43, 2370–2374. (c) Fukunishi, K.; Tabushi, I. Regioselective Radical
Addition of Adamantanes to Dimethyl Maleate. Synthesis 1988, 826–
827. (d) Kato, S.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. N-
Hydroxyphthalimide-Catalyzed Carboxylation of Polycyclic Alkanes
with Carbon Monoxide in the Presence of Dioxygen. J. Org. Chem.
1998, 63, 222. (e) Gonzalez-Cameno, A. M.; Mella, M.; Fagnoni, M.;
Albini, A. Photochemical Alkylation of Ketene Dithioacetal S,S-
Dioxides. An Example of Captodative Olefin Functionalization. J.
Org. Chem. 2000, 65, 297. (f) Campari, G.; Fagnoni, M.; Mella, M.;
Albini, A. Diastereoselective Photosensitised Radical Addition to
Fumaric Acid Derivatives Bearing Oxazolidine Chiral Auxiliaries.
Tetrahedron: Asym. 2000, 11, 1891–1906. (g) Hara, T.; Iwahama, T.;
Sakaguchi, S.; Ishii, Y. Catalytic Oxyalkylation of Alkenes with
Alkanes and Molecular Oxygen via a Radical Process Using N-
Hydroxyphthalimide. J. Org. Chem. 2001, 66, 6425–6431. (h)
Cardarelli, A. M.; Fagnoni, M.; Mella, M.; Albini, A. Hydrocarbon
Activation. Synthesis of β-Cycloalkyl (Di)nitriles through
Photosensitized Conjugate Radical Addition. J. Org. Chem. 2001, 66,
7320–7327. (i) Dondi, D.; Fagnoni, M.; Albini, A. Photomediated
Synthesis of β-alkylketones from Cycloalkanes. Tetrahedron 2006,
62, 5527–5535. (j) Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.;
Fagnoni, M.; Albini, A. Atom-Economical Synthesis of
Unsymmetrical Ketones through Photocatalyzed C-H Activation of
Alkanes and Coupling with CO and Electrophilic Alkenes. Angew.
Chem., Int. Ed. 2011, 50, 1869–1872. (k) Hoshikawa, T.; Kamijo, S.;
Inoue, M. Photochemically Induced Radical Alkynylation of C(sp3)–
H Bonds. Org. Biomol. Chem. 2013, 11, 164–169. (l) Hoshikawa, T.;
Yoshioka, S.; Kamijo, S.; Inoue, M. Photoinduced Direct Cyanation
of C(sp3)–H Bonds. Synthesis 2013, 45, 874–887. (m) Kee, C. W.;
Chin, K. F.; Wong, M. W.; Tan, C.-H. Selective Fluorination of Alkyl
C–H Bonds via Photocatalysis. Chem. Commun. 2014, 50, 8211–
8214. (n) Kamijo, S.; Takao, G.; Kamijo, K.; Tsuno, T.; Ishiguro, K.;
Murafuji, T. Alkylation of Nonacidic C(sp3)–H Bonds by
Photoinduced Catalytic Michael-Type Radical Addition. Org. Lett.
2016, 18, 4912–4915. (o) Kamijo, S.; Kamijo, K.; Maruoka, K.;
Murafuji, T. Aryl Ketone Catalyzed Radical Allylation of C(sp3)–H
Bonds Under Photoirradiation. Org. Lett. 2016, 18, 6516−6519. (p)
Lan, Y.; Yang, C.; Xu, Y.-H.; Loh, T.-P. Direct Coupling of
sp3 Carbon of Alkanes with α,β-Unsaturated Carbonyl Compounds
using a Copper/hydroperoxide System. Org. Chem. Front. 2017, 4,
1411–1415; (q) Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D.
M.; DiRocco, D. A.; MacMillan, D. W. C. Direct Arylation of Strong
Aliphatic C–H Bonds. Nature 2018, 560, 70–75. (r) J.-P. Berndt, F.
Erb, L. Ochmann, J. Beppler, P. Schreiner, Selective Phthalimido-N-
oxyl (PINO)-Catalyzed C–H Cyanation of Adamantane Derivatives.
Synlett, 2019, 30, 493–498.
(12) For reviews on dual catalysis approaches using photoredox
catalysis, see: (a) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C.
Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81,
6898–6926. (b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis
Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–
10074. (c) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT):
A Versatile Strategy for Substrate Activation in Photocatalyzed
Organic Synthesis. Eur. J. Org. Chem. 2017, 2056–2071.
(13) (a) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry
of Proton-Coupled Electron Transfer Reagents and its Implications.
Chem. Rev. 2010, 110, 6961–7001; b) Mayer, J. M. Understanding
Hydrogen Atom Transfer: From Bond Strengths to Marcus Theory.
Acc. Chem. Res. 2011, 44, 36–46.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) (a) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. O–H
Hydrogen Bonding Promotes H-Atom Transfer from α C–H Bonds
for C-Alkylation of Alcohols. Science 2015, 349, 1532–1536. (b)
Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.;
MacMillan, D. W. C. Native Functionality in Triple Catalytic Cross-
Coupling: Sp3 C–H Bonds as Latent Nucleophiles. Science 2016,
352, 1304–1308. (c) Le, C.; Liang, Y.; Evans, R. W.; Li, X.;
MacMillan, D. W. C. Selective Sp3 C–H Alkylation via Polarity-
Match-Based Cross-Coupling. Nature 2017, 547, 79–83. (d) Zhang,
X.; MacMillan, D. W. C. Direct Aldehyde C–H Arylation and
Alkylation via the Combination of Nickel, Hydrogen Atom Transfer,
and Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139, 11353–
11356. .
(15) (a) Choi, G. J.; Zhu, Q.; Miller, D. C.; Guand, C. J.; Knowles,
R. R. Catalytic Alkylation Of Remote C–H Bonds Enabled By
Proton-Coupled Electron Transfer. Nature, 2016, 539, 268–271. (b)
Chu, J. C. K.; Rovis, T. Amide-Directed Photoredox-Catalysed C–C
Bond Formation at Unactivated sp3 C–H Bonds. Nature,
2016, 539, 272-275. (c) Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.;
Glorius, F. Visible-Light-Promoted Activation of Unactivated
C(sp3)−H Bonds and Their Selective Trifluoromethylthiolation. J.
Am. Chem. Soc. 2016, 138, 16200–16203. (d) Kawamata, Y.; Yan,
M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J. T.; Baran, P. S. Scalable,
Electrochemical Oxidation of Unactivated C–H Bonds. J. Am. Chem.
Soc. 2017, 139, 7448–7451. (e) Yuan, W.; Zhou, Z.; Gong, L.;
Meggers, E. Asymmetric Alkylation Of Remote C(Sp3)–H Bonds by
Combining Proton-Coupled Electron Transfer with Chiral Lewis Acid
Catalysis. Chem. Commun. 2017, 53, 8964–8967. (f) Chen, D.-C.;
Chu, J. C. K.; Rovis, T. Directed γ-C(sp3)–H Alkylation of Carboxylic
Acid Derivatives through Visible Light Photoredox Catalysis. J. Am.
Chem. Soc. 2017, 139, 14897-14900. (g) Mukherjee, S.; Garza-
Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F. Alkynylation of C (O)–
H Bonds Enabled by Photoredox-Mediated Hydrogen-Atom Transfer.
Angew. Chem., Int. Ed. 2017, 56, 14723–14726; Alkinylierung von
C (O)-H-Bindungen
Wasserstoffatomtransfer. Angew. Chem. 2017, 129,14915–14919. (h)
Jiang, H.; Studer, A. α-Aminoxy-Acid-Auxiliary-Enabled
durch
Photoredox-vermittelten
(10) For highly C1-selective functionalizations, see: (a) Tabushi, I.;
Aoyama, Y.; Kojo, S.; Hamuro, J.; Yoshida, Z. Free-Radical
Halogenation of Adamantane. Selectivity and Relative Lifetime of 1-
and 2-Adamantyl Radicals. J. Am. Chem. Soc. 1972, 94, 1177–1183.
(b) Ref 9b. (c) Mella, M.; Freccero, M.; Albini, A. Photoinduced SET
for the Functionalization of Alkanes. J. Chem. Soc., Chem. Comm.
1995, 41–42. (d) Schreiner, P. R.; Lauenstein, O.; Butova, E. D.;
Gunchenko, P. A.; Kolomitsin, I. V.; Wittkopp, A.; Feder, G.; Fokin,
A. A. Selective Radical Reactions in Multiphase Systems: Phase-
Transfer Halogenations of Alkanes. Chem. Eur. J. 2001, 7, 4996–
5003. (e) Fokin, A. A.; Tkachenko, B. A.; Gunchenko, P. A.; Gusev,
D. V.; Schreiner, P. R. Functionalized Nanodiamonds Part I. An
Experimental Assessment of Diamantane and Computational
Predictions for Higher Diamondoids. Chem. Eur. J. 2005, 11, 7091–
7101.
Intermolecular Radical γ-C(sp3)−H Functionalization of Ketones.
Angew. Chem., Int. Ed. 2018, 57,1692–1696. (i) Margrey, K. A.;
Czaplyski, W. L.; Nicewicz, D. A.; Alexanian, E. J. A General
Strategy for Aliphatic C–H Functionalization Enabled by Organic
Photoredox Catalysis. J. Am. Chem. Soc. 2018, 140, 4213–4217. (j)
Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J.
D.; Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. Eosin Y as a Direct
Hydrogen-Atom Transfer Photocatalyst for the Functionalization of
C−H Bonds. Angew. Chem., Int. Ed. 2018, 57, 8514–8518. (k)
Mukherjee, S.; Patra, T.; Glorius, F. Cooperative Catalysis: A
Strategy To Synthesize Trifluoromethyl-thioesters from Aldehydes.
ACS Catal. 2018, 8, 5842–5846. (l) Ye, J.; Kalvet, I.; Schoenebeck,
F.; Rovis, T. Direct α-Alkylation of Primary Aliphatic Amines
Enabled by CO2 and Electrostatics. Nat. Chem. 2018, 10, 1037–1041.
(m) Ashley, M. A.; Yamauchi, C.; Chu, J. C. K.; Otsuka, S.;
Yorimitsu, H.; Rovis, T. Photoredox-Catalyzed Site-Selective α-
(11) It has been shown that the C1/C2 selectivity depends on the
species that traps the incipient radical, resulting in different
selectivities using the same catalyst system. Benzophenone has been
ACS Paragon Plus Environment