10.1002/chem.201700171
Chemistry - A European Journal
FULL PAPER
provided by the supercomputing facilities of the Université
catholique de Louvain (CISM/UCL) and the Consortium des
Équipements de Calcul Intensif en Fédération Wallonie Bruxelles
(CÉCI) funded by the Fond de la Recherche Scientifique de
Belgique (F.R.S.-FNRS) under convention 2.5020.11. The NMR
spectrometers used were acquired in collaboration with the
University of South Bohemia (CZ) with financial support from the
European Union through the EFRE INTERREG IV ETC-AT-CZ
program (project M00146, "RERI-uasb"). RR is a Chercheur
qualifié of the F.R.S.-FNRS.
Conclusions
We herein succeeded in the development of the first highly
asymmetric (4+1) annulation protocol between in situ generated
ammonium ylides and ortho-quinone methides to access chiral
2,3-dihydrobenzofuran derivatives. Key to success was the use of
an easily available Cinchona alkaloid as the chiral leaving group,
which resulted in an operationally simple and highly enantio- and
diastereoselective synthesis strategy. Detailed computational
studies support a mechanistic scenario where the high trans-
selectivity of this procedure originates from a rapid isomerization
of the cis-betaine intermediate to the trans-betaine intermediate,
thus resulting in high diastereoselectivities for a broad application
scope.
Keywords: Ylides • Quinone Methides • Stereoselectivity •
Chiral Auxiliary • DFT Calculations
1
For representative reviews please see: (a) A. Radadiya, A. Shah, Eur. J. Med.
Chem., 2015, 97, 356-376; (b) H. K. Shamsuzzaman, Eur. J. Med. Chem., 2015,
97, 483-504; (c) R. J. Nevagi, S. N. Dighe, S. N. Dighe, Eur. J. Med. Chem. 2015,
97, 561-581;
2
3
For some reviews please see: (a) F. Bertolini, M. Pineschi, Org. Prep. Proced.
Int. 2009, 41, 385-418; (b) T. D. Sheppard, J. Chem. Res. 2011, 35, 377-385.
For some recent examples employing different strategies see: (a) E. D. Coy, L.
Jovanovic, M. Sefkow, Org. Lett., 2010, 12, 1976-1979; (b) F. Baragona, T.
Lomberget, C. Duchamp, N. Henriques, E. L. Piccolo, P. Diana, A. Montalbano,
R. Barret, Tetrahedron, 2011, 67, 8731-8739; (c) A. Lu, K. Hu, Y. Wang, H. song,
Z. Zhou, J. Fang, C. Tang, J. Org. Chem., 2012, 77, 6208-6214; (d) K. X.
Rodriguez, J. D. Vail, B. L. Ashfeld, Org. Lett., 2016, 18, 4514-4517; (e) S.
Sharma, S. K. R. Parumala, R. K. Peddinti, Synlett, 2017, 28, 239-244..
For sulfur ylide-mediated (4+1) approaches with aldimines: (a) P. Xie, L. Wang,
L. Yang, E. Li, J. Ma, Y. Huang, R. Chen, J. Org. Chem., 2011, 76, 7699-7705; (b)
Y. Cheng, Y.-Q. Hu, S. Gao, L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Tetrahedron, 2013,
69, 3810-3816.
Experimental Section
General details can be found in the online supporting information. This
document contains detailed synthesis procedures of starting materials and
products and analytical data of novel compounds and reaction products as
well as copies of NMR spectra and HPLC traces. The supporting
information also includes the details of the computational investigations.
4
5
General asymmetric (4+1) annulation procedure: Compound 1 (1
equiv.), ammonium salt 6 (1.2 equiv.) and Cs2CO3 (2.5 equiv.) are
dissolved in DCM (15 mL per mmol 1). The reaction mixture is stirred at
room temperature for 3 days and afterwards extracted with DCM and brine.
The combined organic phases are dried over Na2SO4, filtered and
evaporated to dryness. The crude products are purified by column
chromatography (silica gel, heptane:EtOAc). Purification by column
chromatography (gradient of heptanes and EtOAc) gives the
corresponding 2,3-dihydrobenzofurans in the reported yields and
enantiopurities.
Sulfur ylide-mediated (4+1) addition to o-quinone methides: M.-W. Chen, L.-
L. Cao, Z.-S. Ye, G.-F. Jiang, Y.-G. Zhou, Chem. Commun., 2013, 49, 1660-1662;
(b) B. Wu, M.-W. Chen, Z.-S. Ye, C.-B. Yu, Y.-G. Zhou, Adv. Synth. Catal., 2014,
356, 383-387; (c) X. Lei, C.-H. Jiang, X. Wen, Q.-L. Xu, H. Sun, RSC Adv., 2015,
5, 14953-14957; (d) Q.-Q. Yang, W.-J. Xiao, Eur. J. Org. Chem., 2017, 233-236.
6
7
For a diastereoselective (4+1)-approach using pyridinium ylides: V. A.
Osyanin, D. V. Osipov, Y. N. Klimochkin, J. Org. Chem., 2013, 78, 5505-5520.
For reviews see: (a) V. K. Aggarwal, in Comprehensive Asymmetric Catalysis,
eds. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, New York, 1999, vol.
2, 679; (b) E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K.
Aggarwal, Chem. Rev., 2007, 107, 5841-5883.
For selected three-ring forming examples using sulfur ylides see: (a) O. Illa, M.
Arshad, A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc., 2010, 132,
1828-1830; (b) M. Davoust, J.-F. Briere, P.-A. Jaffres, P. Metzner, J. Org. Chem.,
2005, 70, 4166-4169; (c) Y.-G. Zhou, X.-L. Hou, L.-X. Dai, L.-J. Xia, M.-H. Tang,
J. Chem. Soc., Perkin Trans. 1, 1999, 77-80; (d) V. K. Aggarwal, J. P. H.
Charmant, D. Fuentes, J. N. Harvey, G. Hynd, D. Ohara, W. Picoul, R. Robiette,
C. Smith, J.-L. Vasse, C. L. Winn, J. Am. Chem. Soc., 2006, 128, 2105-2114; (e)
F. Sarabia, S. Chammaa, M. Garcia-Castro, F. Martin-Galvez, Chem. Commun.
2009, 5763-5765; (f) O. Illa, M. Nametubi, C. Saha, M. Ostovar, C. C. Chen, M.
F. Haddow, S. Nocquet-Thibault, M. Lusi, E. M. McGarrigle, V. K. Aggarwal, J.
Am. Chem. Soc., 2013, 135, 11951-11966. (g) R. Robiette, J. Org. Chem., 2006,
71, 2726-2734.
Product 5c. Obtained as a white residue in 85% yield on 1 mmol scale
(e.r. = 99:1). [ꢀ]ꢂꢁꢃ= -8.8 (c = 0.2, DCM, e.r. = 99:1); 1H NMR (700 MHz, δ,
CDCl3, 298 K): 4.99 (d, J = 6.5 Hz, 1H), 5.82 (d, J = 6.4 Hz, 1H), 6.90 (t, J
= 7.5 Hz, 1H), 7.01 – 6.98 (m, 2H), 7.24 – 7.20 (m, 3H), 7.30 – 7.28 (m,
1H), 7.35 – 7.33 (m, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H),
7.96 (d, J = 7.6 Hz, 2H) ppm. 13C NMR (176 MHz, δ, CDCl3, 298 K): 51.0,
90.7, 110.1, 121.8, 125.5, 127.6, 128.3, 128.8, 129.0, 129.1, 129.5, 133.9,
134.6, 142.4, 159.2, 194.8 ppm. HRMS (ESI): m/z calculated for C21H16O2:
323.1043 [M+Na]+; found: 323.1040. The enantioselectivity was
determined by HPLC (YMC Cellulose-SB, eluent: hexane:i-PrOH = 95:5,
0.5 mL/min, 10 °C, retention times: tmajor (2R,3R) = 15.7 min, tminor (2S,3S)
= 17.0 min).
8
9
For selected examples of ammonium ylide mediated three-ring formations by
others see: (a) C. C. C. Johansson, N. Bremeyer, S. V. Ley, D. R. Owen, S. C.
Smith, M. J. Gaunt, Angew. Chem. Int. Ed., 2006, 45, 6024-6028; (b) C. D.
Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt, Angew. Chem. Int.
Ed., 2004, 43, 4641-4644; (c) H. Kinoshita, A. Ihoriya, M. Ju-ichi, T. Kimachi,
Synlett, 2010, 2330-2334; (d) R. Robiette, M. Conza, V. K. Aggarwal, Org.
Biomol. Chem., 2006, 4, 621-623; (e) A. Alex, B. Larmanjat, J. Marrot, F. Couty,
Acknowledgements
This work was supported by the Austrian Science Funds (FWF):
Project No. P26387-N28. Computational resources have been
This article is protected by copyright. All rights reserved.