6044 Nucleic Acids Research, 2019, Vol. 47, No. 12
Carrier-free gene silencing by amphiphilic nucleic acid conjugates in
differentiated intestinal cells. Mol. Ther.–Nucleic Acids, 5, e364.
14. Osborn,M.F., Coles,A.H., Biscans,A., Haraszti,R.A., Roux,L.,
Davis,S., Ly,S., Echeverria,D., Hassler,M.R., Godinho,B.M.D.C.
et al. (2018) Hydrophobicity drives the systemic distribution of
lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids
Res., 47, 1070–1081.
15. Biscans,A., Coles,A., Echeverria,D. and Khvorova,A. (2019) The
valency of fatty acid conjugates impacts siRNA pharmacokinetics,
distribution, and efficacy in vivo. J. Controlled Release, 302, 116–125.
16. Khan,T., Weber,H., DiMuzio,J., Matter,A., Dogdas,B., Shah,T.,
Thankappan,A., Disa,J., Jadhav,V., Lubbers,L. et al. (2016) Silencing
myostatin using Cholesterol-conjugated siRNAs induces muscle
growth. Mol. Ther.–Nucleic Acids, 5, e342.
17. Van Der Vusse,G.J., Glatz,J.F.C., Van Nieuwenhoven,F.A.,
Reneman,R.S. and Bassingthwaighte,J.B. (1998) Transport of
long-chain fatty acids across the muscular endothelium. Adv. Exp.
Med. Biol., 441, 181–191.
18. Kratz,F. (2008) Albumin as a drug carrier: design of prodrugs, drug
conjugates and nanoparticles. J. Controlled Release, 132, 171–183.
19. Garcovich,M., Zocco,M.A. and Gasbarrini,A. (2009) Clinical use of
albumin in hepatology. Blood Transfus., 7, 268–277.
2ꢁ-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid
modifications on potency of GalNAc conjugated antisense
oligonucleotides in mice. Bioorg. Med. Chem. Lett. 28, 3774–3779.
34. Kragh-Hansen,U., Watanabe,H., Nakajou,K., Iwao,Y. and
Otagiri,M. (2006) Chain Length-dependent Binding of Fatty Acid
Anions to Human Serum Albumin Studied by Site-directed
Mutagenesis. J. Mol. Biol., 363, 702–712.
35. Schmidt,K., Prakash,T.P., Donner,A.J., Kinberger,G.A., Gaus,H.J.,
Low,A., Østergaard,M.E., Bell,M., Swayze,E.E. and Seth,P.P. (2017)
Characterizing the effect of GalNAc and phosphorothioate backbone
on binding of antisense oligonucleotides to the asialoglycoprotein
receptor. Nucleic Acids Res., 45, 2294–2306.
36. Mullick,A., Crooke,R.M. and Graham,M. J. (2012) Antisense
inhibition of CD36 expression and therapeutic uses thereof.
WO2012149465A2.
37. Pandey,S.K., Wheeler,T.M., Justice,S.L., Kim,A., Younis,H.S.,
Gattis,D., Jauvin,D., Puymirat,J., Swayze,E.E., Freier,S.M. et al.
(2015) Identification and characterization of modified antisense
oligonucleotides targeting DMPK in mice and nonhuman primates
for the treatment of myotonic dystrophy type 1. J. Pharmacol. Exp.
Ther., 355, 310–321.
38. Jauvin,D., Chretien,J., Pandey,S.K., Martineau,L., Revillod,L.,
Bassez,G., Lachon,A., McLeod,A.R., Gourdon,G., Wheeler,T.M.
et al. (2017) Targeting DMPK with antisense oligonucleotide
improves muscle strength in myotonic dystrophy type 1 mice. Mol.
Ther.–Nucleic Acids, 7, 465–474.
39. Campostrini,G., Bonzanni,M., Lissoni,A., Bazzini,C., Milanesi,R.,
Vezzoli,E., Francolini,M., Baruscotti,M., Bucchi,A., Rivolta,I. et al.
(2017) The expression of the rare caveolin-3 variant T78M alters
cardiac ion channels function and membrane excitability. Cardiovasc.
Res., 113, 1256–1265.
40. Song,K.S., Scherer,P.E., Tang,Z., Okamoto,T., Li,S., Chafel,M.,
Chu,C., Kohtz,D.S. and Lisanti,M.P. (1996) Expression of Caveolin-3
in skeletal, cardiac, and smooth muscle Cells: Caveolin-3 is a
component of the sarcolemma and co-fractionates with dystrophin
and dystrophin-associated glycoproteinS. J. Biol. Chem., 271,
15160–15165.
41. Benson,M.D., Waddington-Cruz,M., Berk,J.L., Polydefkis,M.,
Dyck,P.J., Wang,A.K., Plante-Bordeneuve,V., Barroso,F.A.,
Merlini,G., Obici,L. et al. (2018) Inotersen treatment for patients with
hereditary transthyretin amyloidosis. N. Engl. J. Med., 379, 22–31.
42. Mickle,K., Dreitlein,W.B., Pearson,S.D., Lasser,K.E., Hoch,J.S. and
Cipriano,L.E. (2019) The effectiveness and value of patisiran and
inotersen for hereditary transthyretin amyloidosis. J. Manag. Care
Spec. Pharm., 25, 10–15.
43. Rizzuti,B., Bartucci,R., Sportelli,L. and Guzzi,R. (2015) Fatty acid
binding into the highest affinity site of human serum albumin
observed in molecular dynamics simulation. Arch. Biochem. Biophys.,
579, 18–25.
44. Curry,S., Mandelkow,H., Brick,P. and Franks,N. (1998) Crystal
structure of human serum albumin complexed with fatty acid reveals
an asymmetric distribution of binding sites. Nat. Struct. Biol., 5,
827–835.
45. Fasano,M., Curry,S., Terreno,E., Galliano,M., Fanali,G., Narciso,P.,
Notari,S. and Ascenzi,P. (2005) The extraordinary ligand binding
properties of human serum albumin. IUBMB Life, 57, 787–796.
46. Srinivasan,S.K., Tewary,H.K. and Iversen,P.L. (1995)
Characterization of binding sites, extent of binding, and drug
interactions of oligonucleotides with albumin. Antisense Res. Dev., 5,
131–139.
47. Hvam,M.L., Cai,Y., Dagnæs-Hansen,F., Nielsen,J.S., Wengel,J.,
Kjems,J. and Howard,K.A. (2017) Fatty acid-modified gapmer
antisense oligonucleotide and serum albumin constructs for
pharmacokinetic modulation. Mol. Ther., 25, 1710–1717.
48. Ellmerer,M., Schaupp,L., Brunner,G.A., Sendlhofer,G., Wutte,A.,
Wach,P. and Pieber,T.R. (2000) Measurement of interstitial albumin
in human skeletal muscle and adipose tissue by open-flow
microperfusion. Am. J. Physiol. - Endocrinol. Metab., 278,
E352–E356.
20. Larsen,M.T., Kuhlmann,M., Hvam,M.L. and Howard,K.A. (2016)
Albumin-based drug delivery: harnessing nature to cure disease. Mol.
Cell Ther., 4, 1–12.
21. Plum,A., Jensen,L.B. and Kristensen,J.B. (2013) In vitro protein
binding of liraglutide in human plasma determined by reiterated
stepwise equilibrium dialysis. J. Pharm. Sci., 102, 2882–2888.
22. Home,P. and Kurtzhals,P. (2006) Insulin detemir: from concept to
clinical experience. Expert Opin. Pharmacother., 7, 325–343.
23. Gaus,H.J., Gupta,R., Chappell,A.E., Ostergaard,M.E., Swayze,E.E.
and Seth,P.P. (2018) Characterization of the interactions of
chemically-modified therapeutic nucleic acids with plasma proteins
using a fluorescence polarization assay. Nucleic Acids Res., 57,
2061–2064.
24. Seth,P.P., Tanowitz,M. and Bennett,C.F. (2019) Selective tissue
targeting of synthetic nucleic acid drugs. J. Clin. Invest., 129, 915–925.
25. Leeds,J.M., Graham,M.J., Truong,L. and Cummins,L.L. (1996)
Quantitation of phosphorothioate oligonucleotides in human plasma.
Anal. Biochem., 235, 36–43.
26. Gaus,H.J., Owens,S.R., Cooper,S. and Cummins,L.L. (1997) Online
HPLC electrospray mass spectrometry of phosphorothioate
oligonucleotide metabolites. Anal. Chem., 69, 313–319.
27. Crooke,S.T., Wang,S., Vickers,T.A., Shen,W. and Liang,X-h. (2017)
Cellular uptake and trafficking of antisense oligonucleotides. Nat.
Biotechnol., 35, 230–237.
28. Miller,C.M., Harris,E.N., Tanowitz,M., Donner,A.J., Prakash,T.P.,
Swayze,E.E. and Seth,P.P. (2018) Receptor-mediated uptake of
phosphorothioate antisense oligonucleotides in different cell types of
the liver. Nucleic Acid Ther., 28, 119–127.
29. Seth,P.P., Siwkowski,A., Allerson,C.R., Vasquez,G., Lee,S.,
Prakash,T.P., Wancewicz,E.V., Witchell,D. and Swayze,E.E. (2009)
Short antisense oligonucleotides with novel 2ꢁ-4ꢁ conformationaly
restricted nucleoside analogues show improved potency without
increased toxicity in animals. J. Med. Chem., 52, 10–13.
30. Gaus,H., Miller,C.M., Seth,P.P. and Harris,E.N. (2018) Structural
determinants for the interactions of chemically modified nucleic acids
with the stabilin-2 clearance receptor. Biochemistry, 57, 2061–2064.
31. Graham,M.J., Crooke,S.T., Lemonidis,K.M., Gaus,H.J.,
Templin,M.V. and Crooke,R.M. (2001) Hepatic distribution of a
phosphorothioate oligodeoxynucleotide within rodents following
intravenous administration. Biochem. Pharmacol., 62, 297–306.
32. Graham,M.J., Crooke,S.T., Monteith,D.K., Cooper,S.R.,
Lemonidis,K.M., Stecker,K.K., Martin,M.J. and Crooke,R.M.
(1998) In vivo distribution and metabolism of a phosphorothioate
oligonucleotide within rat liver after intravenous administration. J.
Pharmacol. Exp. Ther., 286, 447–458.
33. Prakash,T.P., Yu,J., Kinberger,G.A., Low,A., Jackson,M., Rigo,F.,
Swayze,E.E. and Seth,P.P. (2018) Evaluation of the effect of