B. Jiang et al. / Tetrahedron Letters 53 (2012) 1261–1264
1263
Acknowledgments
We are grateful for financial support from the National Science
Foundation of China (21072163, 21110102002, and 21102124),
PAPD of Jiangsu Higher Education Institutions, Science Foundation
in Interdisciplinary Major Research Project of Xuzhou Normal Uni-
versity (No. 09XKXK01), the NSF of Jiangsu Education Committee
(11KJB150016), Jiangsu Science and Technology Support Program
(No. BE2011045), and Doctoral Research Foundation of Xuzhou
Normal Univ. (XZNU, No. 10XLR20).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 2. X-ray crystallography structure of compound 4s.20
1. (a) New Avenues to Efficient Chemical Synthesis. Emerging Technologies,
Seeberger, P. H.; Blume, T., Eds.; Springer: Heidelberg, 2007 (Ernst Schering
Foundation Symposium Proceedings 2006–3).; (b) Nicolaou, K. C.; Yue, E. W.;
Oshima, T. In The New Chemistry; Hall, N., Ed.; Cambridge University Press:
Cambridge, 2001; pp 168–198; (c) Tietze, L. F.; Hautner, F. In Stimulating
Concepts in Organic Chemistry; Vgtle, F., Stoddart, J. F., Shibashaki, M., Eds.;
Wiley: Weinheim, 2000; pp 38–64.
2. Recent reviews on multicomponent reactions see: Groenendaal, (a) Ruijter, B.
E.; Orru, R. V. A. Chem. Commun. 2008, 5474; (b) Ismabert, N.; Lavila, R. Chem.-
Eur. J. 2008, 14, 8444; (c) Sunderhaus, J. D.; Martin, S. F. Chem.-Eur. J. 2009, 15,
1300; (d) Ganem, B. Acc. Chem. Res. 2009, 42, 463; (e) Tietze, L. F.; Kinzel, T.;
Brazel, C. C. Acc. Chem. Res. 2009, 42, 367; (f) Estevez, V.; Villacampa, M.;
Menendez, J. C. Chem. Soc. Rev. 2010, 39, 4402; (g) Candeias, N. R.; Montalbano,
F.; Cal, P. M. S. D.; Gois, P. M. P. Chem. Rev. 2010, 110, 6169; (h) Toure, B. B.; Hall,
D. G. Chem. Rev. 2009, 109, 4439; (i) Jiang, B.; Rajale, T.; Walter, W.; Tu, S.-J.; Li,
G. Chem.-Asian J. 2010, 5, 2318; (j) Isambert, N.; Duque, M.; Del, M. S.;
Plaquevent, J.-C.; Genisson, Y.; Rodriguez, J.; Constantieux, T. Chem. Soc. Rev.
2011, 40, 1347.
Ar'
Ar'
Ar
O
O
2
HN
N
H2N
NH
O
Ar
Ar
3
1
Ar
Ar
[3+3] Cyclization
Base
X
X
2
X
B
A
X = S, O
1,5-Hydrogen Transfer
Ar'
Ar'
N
N
3. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115; (b) Tietze, L. F.; Haunert, F. In
Stimulating Concepts in Chemistry; Votle, F., Stoddart, J. F., Shibasaki, M., Eds.;
Wiley: Weinheim, 2000; pp 39–64; (c) Enders, D.; Huttl, M. R. M.; Grondal, C.;
Raabe, G. Nature 2006, 861.
4. Brown, D. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Eds.; Pergamon: Oxford, 1996. Vol. 3, Chapter 2.13.
HN
X
N
1,3-Hydrogen Transfer
Ar
Ar
Ar
Ar
X
B'
4
5. Lagoja, I. M. Chem. Biodiversity 2005, 2, 1.
6. Kamdar, N. R.; Haveliwala, D. D.; Mistry, P. T.; Patel, S. K. Eur. J. Med. Chem.
2010, 45, 5056–5063.
Scheme 3. Proposed mechanism for the formations of fused pyrimidines 4.
7. (a) Abdel Fattah, M. E.; Atta, A. H.; Abdel Gawad, I. I.; Mina, S. M. Orient. J. Chem.
2004, 20, 257; (b) Ghorab, M. M.; Hassan, A. Y. Phosphorus Sulfur Silicon 1998,
141, 251.
8. Bruno, O.; Brullo, C.; Ranise, A.; Schenone, S.; Bondavalli, F.; Barocelli, E.;
Ballabeni, V.; Chiavarini, M.; Tognolini, M.; Impicciatore, M. Bioorg. Med. Chem.
Lett. 2001, 11, 1397.
9. Akluwalia, V. K.; Bala, Madhu Indian J. Chem., Sect. B 1996, 35B, 742.
10. Shamroukh, A. H.; Zaki, M. E. A.; Morsy, E. M. H.; Abdel-Motti, F. M.; Abdel-
Megeid, F. M. E. Arch. Pharm. 2007, 340, 236.
11. Yen, T. T.; Dininger, N. B.; Broderick, C. L.; Gill, A. M. Arch. Int. Pharmacodyn.
Ther. 1990, 308, 137.
12. (a) Ohno, S.; Mizukoshi, K.; Komatsu, O.; Kuno, Y.; Nakamura, Y.; Kato, E.;
Nagasaka, M. Chem. Pharm. Bull. 1986, 34, 4150; (b) Ogawa, H.; Kunoh, Y.;
Sugiura, T.; Nagasaka, M. Life Sci. 1992, 50, 375.
13. (a) Majumdar, K. C.; Chattopadhyay, S. K. Can. J. Chem. 2006, 84, 469; (b)
Majumdar, K. C.; Jana, N. K.; Bandyopadhyay, A.; Ghosh, S. K. Synth. Commun.
2001, 31, 2979; (c) Assy, M. G.; Amer, A. M.; El-Bahaie, S.; Halima, E. A. Polish J.
Chem. 1998, 72, 61; (d) El-Bahaie, S.; Assy, M. G. J. Chin. Chem. Soc. 1990, 37,
497; (e) El-Bahaie, S. Pharmazie 1990, 45, 62.
14. (a) Perjesi, P.; Foldesi, A.; Tamas, J. Monatsh. Chem. 1993, 124, 167; (b) El-
Rayyes, N. R.; Al-Saleh, B.; Al-Omran, F. J. Chem. Eng. Data 1987, 32, 280.
15. (a) Zhu, X.; Zhao, G.; Zhou, X.; Xu, X.; Xia, G.; Zheng, Z.; Wang, L.; Yang, X.; Li, S.
Bioorg. Med. Chem. Lett. 2010, 20, 299; (b) Ahluwalia, V. K.; Gupta, Charu;
Khanduri, C. H. Indian J. Chem., Sect. B 1992, 31B, 355; (c) Weis, A. L.; Frolow, F. J.
Chem. Soc. Perkin Trans. 1 1986, 83; (d) Weis, A. L. Synthesis 1985, 528; (e) Kuno,
A.; Sugiyama, Y.; Katsuta, K.; Kamitani, T.; Takasugi, H. Chem. Pharm. Bull. 1992,
40, 1452.
16. (a) Jiang, B.; Tu, S.-J.; Kaur, P.; Wever, W.; Li, G. J. Am. Chem. Soc. 2009, 131,
11660; (b) Jiang, B.; Li, C.; Shi, F.; Tu, S.-J.; Kaur, P.; Wever, W.; Li, G. J. Org.
Chem. 2010, 75, 2962; (c) Ma, N.; Jiang, B.; Zhang, G.; Tu, S.-J.; Wever, W.; Li, G.
Green Chem. 2010, 12, 1357; (d) Cheng, C.; Jiang, B.; Tu, S.-J.; Li, G. Green Chem.
2011, 13, 2107.
A reasonable mechanism for the formation of 4 was proposed in
Scheme 3. The formation of 4 is expected to proceed via initial
condensation of aromatic aldehydes and heterocyclic ketones 2
to afford 2,6-dibenzylidene heterocyclic ketones A, and then the
[3+3] cycloaddition between A and aryl amidine 3 would provide
intermediate B, which undergoes sequential 1,5-, and 1,3-hydro-
gen transfer to afford the final products 4.
Besides a high efficiency in the formation of multiple bonds as a
domino process, this reaction has the following advantages: (1) the
starting materials are readily available and the reagents are not
expensive; (2) the convenient work-up which only needs simple fil-
tration since the products directly precipitate out after the reaction
system is neutralized with acid and when its mixtures are diluted
with cold water; (3) short reaction times; (4) the regiospecific con-
struction of fused pyrimidine derivatives with benzyl group resid-
ing in 8-position of thiopyranopyrimidine nucleus. The novelty of
the present multicomponent domino reaction is shown by the fact
that multiple chemical bonds breaking and forming were simulta-
neously achieved in an intermolecular manner and in a one-pot
operation.
In summary, new multi-component domino reactions for regio-
specific construction of polysubstituted thiopyrano- or pyranopyr-
imidine skeletons have been established. The reactions showed
high regioselectivity and broad substrate scope which further can
employ in a wide range of common commercial starting materials.
17. (a) Jiang, B.; Zhang, G.; Ma, N.; Shi, F.; Tu, S.-J.; Kaur, P.; Li, G. Org. Biomol. Chem.
2011, 9, 3834; (b) Jiang, B.; Wang, X.; Shi, F.; Tu, S.-J.; Li, G. Org. Biomol. Chem.
2011, 9, 4025; (c) Jiang, B.; Hao, W.-J.; Zhang, J.-P.; Tu, S.-J.; Shi, F. Org. Biomol.