L. Ni et al. / Tetrahedron Letters 53 (2012) 1271–1274
1273
Table 1
using readily available starting materials. The synthetic route is
highlighted by the construction of the pyrrole moiety via a reaction
a
The screening of Morgen-Walls reaction
EtOOC
EtOOC
between TosMIC and a, b-unsaturated ester under basic condition
and the efficient construction of quinoline ring through Morgen-
Walls reaction. In particular, our synthetic route could enable the
installation of various functional groups at 2-position of pyrrolo-
quinoline, which facilitates the syntheses of other related natural
products and structural modification for further pharmacological
study.
NH
Conditions
NH
R
Morgen-Walls
reaction
NHCOR
N
16a R = CH3
16b R = CH2CH(CH3)2
16c
17a R = CH3
17b R = CH2CH(CH3)2
17c
R = Bn
R = Bn
b
Acknowledgments
Entry
Substrate
Condition
Yield
1
2
3
4
5
6
7
8
9
16a
16a
16a
16a
16a
16a
16a
16b
16c
SOCl2,CH3CN, reflux, 12 h
P2O5, CH3CN, reflux, 12 h
17a, 5%
Financial support from NCET 2008 and Fok Ying Tong Education
Foundation (121040) by the Ministry of Education of China,
2009ZX09103-128 and Fundamental Research Funds for the Cen-
tral Universities (JKZ2009002 and JKGZ201110 for HY) are highly
appreciated.
17a, 34%
17a, N.R
17a, N.R
17a, 84%
17a, 80%
17a, 92%
17b, 85%
17c, 90%
Tf2O, DMAP, CH2Cl2, rt12 h
PPA, CH3CN, reflux, 12 h
TFAA, CH3CN, reflux, 12 h
POCl3, Toluene, reflux, 12 h
POCl3, CH3CN, reflux, 12 h
POCl3, CH3CN, reflux, 12 h
POCl3, CH3CN, reflux, 12 h
Supplementary data
a
All reactions were performed in 0.5 mmol scale in anhydrous solvents.
Isolated yield after flash column chromatography.
b
Supplementary data associated with this article can be found, in
pyrroloquinolines 17a in excellent yields (entries 5–7). Similarly,
treatment of 16b and 16c with POCl3 in anhydrous CH3CN could af-
ford the corresponding products 17b and 17c in 85% and 90%
yields, respectively (entries 8, 9).8–10
References and notes
1. Okanya, P. W.; Mohr, K. I.; Gerth, K.; Jansen, R.; Muller, R. J. Nat. Prod. 2011, 74,
603.
Finally, we examined the decarboxylation of 17a–17c to synthe-
size 1–3 and the results are summarized in Table 2. We first used
17a as a substrate to probe an optimal reaction condition. We
found that treatment of 17a under several typical conditions such
2. Srisukchayakul, P.; Suwanachart, C.; Sangnoi, Y.; Kanjana-Opas, A.; Hosoya, S.;
Yokota, A.; Arunpairojana, V. Int. J. Syst. Evol. Microbiol. 2007, 57, 2275.
3. Kanjana-Opas, A.; Panphon, S.; Fun, H.; Chantrapromma, S. Acta Crystallogr.
2006, E62, 2728.
4. (a) Jia, Y.; Zhu, J. J. Org. Chem. 2006, 71, 7826; (b) Nazaré, M.; Schneider, C.;
Lindenschmidt, A.; Will, D. W. Angew. Chem., Int. Ed. 2004, 43, 4526.
5. (a) van Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; van Leusen, D. Tetrahedron
Lett. 1972, 52, 5337; (b) van Leusen, D.; van Leusen, A. M. Org. React. 2003, 57,
419; (c) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron 1990, 46, 7587; (d)
Dijkstra, H. P.; ten Have, R.; van Leusen, A. M. J. Org. Chem. 1998, 63, 5332; (e)
Pavri, N. P.; Trudell, M. L. J. Org. Chem. 1997, 62, 2649; (f) Zhu, R.; Xing, L.; Liu, Y.;
Deng, F.; Wang, X. Y.; Hu, Y. J. Organomet. Chem. 2008, 693, 3897.
6. Smith, N. D.; Huang, D.; Cosford, N. D. P. Org. Lett. 2002, 4, 3537.
7. (a) Morgen, C. T.; Walls, P. L. J. Chem. Soc. 1931, 2447; (b) Morgen, C. T.; Walls, P.
L. J. Chem. Soc. 1932, 2225.
as Ag2CO3/HOAc,11 NaOH/EtOH, or NaOH/(CH2OH)2 at high tem-
12
perature only gives 1 in very poor yields (table 2, entries 1–3). The
decarboxylation of 17a could proceed smoothly to afford 1 in about
65% yield with concentrated HCl for 12 h (entry 4).13 The carboxyl-
ate groups of 17b and 17c could also be removed under the same
condition to afford 2–3 (entries 5, 6). The structures of 1–3 were
confirmed by 1H NMR, 13C NMR, IR, and HRMS (ESI).14–16 The spec-
troscopic data of 1–3 were identical to those of authentic samples
reported in the literature.1
8. Compound 17a: White solid; mp. 196–198 °C; IR (KBr) 3474, 2922, 1716, 1443,
1369, 1292, 1195, 1150, 1103, 758 cmÀ1 1H NMR (300 MHz, CDCl3) d 9.63–
;
In summary, the first concise total syntheses of Marinoquino-
lines A–C (1–3) in short linear steps were successfully achieved
9.66 (m, 1H), 8.16 (s, 1H), 8.09–8.13 (m, 1H), 7.60–7.63 (m, 2H), 4.44 (q,
J = 7.1 Hz, 2H), 1.44 (d, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 164.67,
145.78, 143.54, 133.53, 129.80, 127.85, 127.13, 127.08, 126.50, 125.79, 123.11,
111.90, 60.42, 20.50, 14.49; HRMS (ESI) m/z calcd for C15H15N2O2: 254.1055;
Found: 254.1068.
9. Compound 17b: White solid; mp. 180–182 °C; IR (KBr) 3504, 3085, 2929, 1712,
1686, 1587, 1357, 1154, 1135 cmÀ1 1H NMR (300 MHz, CDCl3) d 10.15 (br, 1H),
;
Table 2
Optimization of decarboxylation of 17a–17ca
9.64–9.67 (m, 1H), 8.05–8.14 (m, 1H), 7.57–7.65 (m, 2H), 4.42 (q, J = 7.1 Hz,
2H), 2.99 (d, J = 6.9 Hz, 2H), 2.10–2.19 (m, 1H), 1.44 (d, J = 7.1 Hz, 3H), 0.67 (d,
J = 6.5 Hz, 6H); 13C NMR (75 MHz, CDCl3) d 164.88, 149.53, 143.33, 134.15,
130.00, 127.67, 127.19, 127.14, 125.80, 123.16, 111.71, 60.44, 43.13, 22.23,
14.52; HRMS (ESI) m/z calcd for C15H15N2O2: 297.1525; Found: 297.1538.
10. Compound 17c: White solid; mp 175–176 °C; IR (KBr) 3448, 2920, 1707, 1589,
EtOOC
Conditions
NH
NH
1480, 1175, 1105, 760 cmÀ1 1H NMR (300 MHz, CDCl3) d 9.61–9.64 (m, 1H),
;
N
R
N
R
8.16–8.19 (m, 1H), 7.29 (s, 1H), 7.62–7.67 (m, 2H), 7.15–7.19 (m, 2H), 6.79–
6.82 (m, 2H), 4.52 (s, 2H), 4.40 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 1.40 (d, J = 7.1 Hz,
3H); 13C NMR (75 MHz, d6-DMSO) d 165.55, 150.04, 144.86, 140.112, 135.86,
130.63, 130.36, 130.14, 129.89, 127.83, 127.69, 127.58, 127.01, 126.52, 123.90,
111.37, 61.18, 40.81, 15.77; HRMS (ESI) m/z calcd for C21H19N2O2: 330.1368;
Found: 330.1385.
17a R = CH3
1 R = CH3
2 R = CH2CH(CH3)2
17b R = CH2CH(CH3)2
17c
R = Bn
3
R = Bn
b
Entry
Substrate
Condition
Yield
11. Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Org. Lett. 2009, 11, 5710.
12. Kim, H. J.; Lindsey, J. S. J. Org. Chem. 2005, 70, 5475.
13. Mundle, S. O. C.; Lacrampe-Couloume, G.; Lollar, B. S.; Kluger, R. J. Am. Chem.
Soc. 2010, 132, 2430.
1
17a
NaOH, EtOH, then 10% Ag2CO3, 5% HOAc,
DMSO, 120 °C
1, NR
2
3
17a
17a
17a
17b
17c
NaOH, EtOH, reflux, 12 h
NaOH, (CH2OH)2, 120–160 °C
Conc. HCl, reflux, 12 h
Conc. HCl, reflux, 12 h
Conc. HCl, reflux, 12 h
1, Trace
1, 10%
1, 65%
2, 72%
3, 57%
14. Marinoquinoline A (1): White solid; mp. 238–240 °C; IR (KBr) 3457, 3081, 2922,
1587, 1533, 1480, 1198, 1137, 751 cmÀ1 1H NMR (300 MHz, CD3COCD3) d
;
4
11.12 (br s, 1H), 8.19–8.24 (m, 1H), 7.98–8.02 (m, 1H), 7.57 (d, J = 2.8 Hz, 1H),
7.29 (s, 1H), 7.46–7.56 (m, 2H), 7.15–7.19 (m, 2H), 7.11 (d, J = 2.8 Hz, 1H), 2.83
(s, 3H); 13C NMR (75 MHz, CD3COCD3) d 146.97, 143.88, 129.94, 128.46, 127.17,
126.14, 125.72, 124.28, 123.79, 102.05, 21.32; HRMS (ESI) m/z calcd for
5c
6c
a
b
c
The reactions were performed in 0.43 mmol scale.
Isolated yield after flash column chromatography.
The reactions were performed in 0.25 mmol scale.
C
12H11N2: 182.0844; Found: 182.0849.
15. Marinoquinoline B (2): White solid; mp 196–198 °C; IR (KBr) 3463, 2956, 2926,
1588, 1482, 1362, 752 cmÀ1 1H NMR (300 MHz, CD3COCD3) d 11.16 (br s, 1H),
;