Table 5 Raecycling experiments with [RuCl
2
(PTA)
4
] under biphasic
Support from NSF is also acknowledged for the NMR facilities
CHE-0521191).
conditions
(
b
Recycling experiment
Notes and references
Substrate
1
2
3
4
5
6
7
1
2
3
T. J. Ahmed, S. M. M. Knapp and D. R. Tyler, Coord. Chem. Rev.,
010, 255, 949–974.
V. Y. Kukushkin and A. J. L. Pombeiro, Inorg. Chim. Acta, 2005, 358,
–21.
V. Y. Kukushkin and A. J. L. Pombeiro, Chem. Rev., 2002, 102, 1771–
802.
J. L. Eglin, Comments Inorg. Chem., 2002, 23, 23–43.
A. W. Parkins, Platinum Met. Rev., 1996, 40, 169–174.
R. A. Michelin, M. Mozzon and R. Bertani, Coord. Chem. Rev.,
1996, 147, 299–338.
9
9
99
(93)
99
(89)
98
(91)
98
(88)
89
(89)
88
(86)
2
(
69)
1
a
Conditions: nitrile (1 mmol), [RuCl
tert-amyl alcohol (1.5 mL), 100 C, 24 h, in air. Conversions are
determined by GC (isolated yields given in parentheses).
2
(PTA)
4
] (5 mol%), H
2
O (1.5 mL),
◦
b
1
4
5
6
efficiency of two phases aqueous biphasic hydration of benzoni-
trile to benzamide reached 84% conversion after 7 h compared to
9% conversion in water; therefore, 24 h was used in the biphasic
7
8
S.-I. Murahashi and H. Takaya, Acc. Chem. Res., 2000, 33, 225–233.
For recent reviews see: (a) K. H. Shaughnessy, Chem. Rev., 2009,
9
1
09, 643–710; (b) N. Pinault and D. W. Bruce, Coord. Chem. Rev.,
reactions. After 24 h the organic phase (tert-amyl alcohol) was
decanted off and benzamide isolated. Fresh benzonitrile and
tert-amyl alcohol were added to the aqueous phase for the
next reaction. The catalyst could be recycled five times without
significant loss of catalytic activity. A slight decrease in catalytic
activity was observed after the fifth cycle attributed to catalyst
leaching into the organic layer (slight yellow color observed over
time in the organic layer). Ruthenium leaching into the organic
layer was indeed observed by ICP-AES with the [Ru] increasing
with each cycle: recycling experiment 1 (2.9 ppm Ru), 4 (24.5
2003, 241, 1–25; (c) F. Jo o´ , Aqueous Organometallic Catalysis, Kluwer
Academic Publishers: Dordrecht, The Netherlands, 2001; (d) R. A.
Sheldon, Green Chem., 2005, 7, 267–278.
9
V. Cadierno, J. Francos and J. Gimeno, Chem.–Eur. J., 2008, 14,
6
601–6605.
10 R. Garc ´ı a- A´ lvarez, J. D ´ı ez, P. Crochet and V. Cadierno,
Organometallics, 2010, 29, 3955–3965.
1
1
1
1 V. Cadierno, J. D ´ı ez, J. Francos and J. Gimeno, Chem.–Eur. J., 2010,
1
6, 9808–9817.
2 S. E. Garc ´ı a-Garrido, J. Francos, V. Cadierno, J.-M. Basset and V.
Polshettiwar, ChemSusChem, 2011, 4, 104–111.
3 T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K.
Jitsukawa and K. Kaneda, Chem. Commun., 2009, 3258–3260.
4 V. Polshettiwar and R. S. Varma, Chem.–Eur. J., 2009, 15, 1582–1586.
5 K. Yamaguchi, M. Matsushita and N. Mizuno, Angew. Chem., Int.
Ed., 2004, 43, 1576–1580.
32
ppm Ru), and 7 (77.2 ppm Ru).
1
1
Conclusions
16 T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi
and K. Takai, Organometallics, 2005, 24, 6287–6290.
ˇ
In conclusion, we have described an efficient and recyclable
catalytic system to convert nitriles to amides in aqueous environ-
ments with tolerance of air and a variety of functional groups.
Advantages of the catalytic system discussed here include easy
catalyst preparation, simple reaction setup, and the use of green
solvent (water). The catalyst is robust and highly recyclable
under atmospheric conditions (no inert atmosphere required).
Isolation of many amides by decantation from water largely
decreases or circumvents the use of organic solvents, even in
the workup steps. The gram-scale amide synthesis by hydration
17 T. Smejkal and B. Breit, Organometallics, 2007, 26, 2461–2464.
1
8 M. Muranaka, I. Hyodo, W. Okumura and T. Oshiki, Catal. Today,
2
011, 164, 552–555.
9 For reviews, see: (a) D. B. Grotjahn, Pure Appl. Chem., 2010, 82,
35–647; (b) D. B. Grotjahn, Dalton Trans., 2008, 6497–6508; (c) D.
1
6
B. Grotjahn, Chem.–Eur. J., 2005, 11, 7146–7153; (d) D. B. Grotjahn,
Chem. Lett., 2010, 39, 908–914.
2
2
0 T. Ikariya and A. J. Blacker, Acc. Chem. Res., 2007, 40, 1300–1308.
1 D. B. Grotjahn, C. R. Larsen, J. L. Gustafson, R. Nair and A.
Sharma, J. Am. Chem. Soc., 2007, 129, 9592–9593.
2
2
2 G. Erdogan and D. B. Grotjahn, J. Am. Chem. Soc., 2009, 131, 10354–
1
0355.
3 D. B. Grotjahn and D. A. Lev, J. Am. Chem. Soc., 2004, 126, 12232–
of nitriles using [RuCl
2
(PTA) ] in water is simple, practical and
4
1
2233.
environmentally friendly.
24 D. B. Grotjahn, C. D. Incarvito and A. L. Rheingold, Angew. Chem.,
Int. Ed., 2001, 40, 3884–3887.
2
2
2
2
5 F. Boeck, T. Kribber, L. Xiao and L. Hintermann, J. Am. Chem. Soc.,
2
011, 133, 8138–8141.
Experimental section
6 L. Hintermann, T. T. Dang, A. Labonne, T. Kribber, L. Xiao and P.
Naumov, Chem.–Eur. J., 2009, 15, 7167–7179.
General procedure for the catalytic nitrile hydration
´
7 R. Garc ´ı a-Alvarez, J. Francos, P. Crochet and V. Cadierno, Tetrahe-
dron Lett., 2011, 52, 4218–4220.
Under air, 1 mmol nitrile, 3 mL water, and 5 mol% [RuCl
2
(PTA) ]
4
8 (a) D. J. Darensbourg, F. Jo o´ , M. Kannisto, A. Katho, J. H.
Reibenspies and D. J. Daigle, Inorg. Chem., 1994, 33, 200–208; (b) D.
J. Darensbourg, F. Jo o´ , M. Kannisto, A. Katho and J. H. Reibenspies,
Organometallics, 1992, 11, 1990–1993.
(
40 mg) were added to a Telfon-sealed screw-cap culture tube and
◦
stirred at 100 C for 7 h. The GC yields were obtained by taking
a small aliquot (~50 mL) from the hot solution and extracting
2
9 (a) G. Laurenczy, F. Jo o´ and L. N a´ dasdi, Inorg. Chem., 2000, 39,
with CH
2
2
Cl (2 mL ¥ 3) and analysing by GC-MS. Isolated
5
083–5088; (b) F. Jo o´ , G. Laurenczy, P. Kar a´ dy, J. Elek, L. N a´ dasdi
yields were obtained by either decanting the aqueous layer from
the product crystals or by evaporation of the solvent followed by
column chromatography over silica gel (eluent: ethyl acetate).
and R. Roulet, Appl. Organomet. Chem., 2000, 14, 857–859; (c) F.
Jo o´ , G. Laurenczy, L. N a´ dasdi and J. Elek, Chem. Commun., 1999,
971–972.
32
3
3
0 It is unlikely that the activity of [RuCl
2
(PTA)
(PTA) ] are slightly acidic (pH
5). Our efforts exploring the effect of pH on ruthenium catalyzed
nitrile hydration will be the subject of a future manuscript.
1 While inactive for nitrile hydration [RuCl (PPh ] is active for
4
] is due to increased
-
[
OH ] as aqueous solutions of [RuCl
2
4
~
Acknowledgements
2
3 3
)
Support of this work by the National Science Foundation
CAREER program (CHE-0645365) is gratefully acknowledged.
isomerization reactions in aqueous solution: (a) C.-J. Li, D. Wang and
D.-L. Chen, J. Am. Chem. Soc., 1995, 117, 12867–12868; (b) D. Wang,
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 62–66 | 65