ChemComm
Communication
We are grateful for the financial support from the National
Natural Science Foundation of China (21121062 to YT) and the
CAS-Croucher Funding Scheme.
Notes and references
1 (a) T. C. Nugent, Chiral Amine Synthesis: Methods, Developments and
Applications, Wiley-VCH, Weinheim, Germany, 2010; (b) A. Ricci, Modern
Amination Methods, Wiley-VCH, Weinheim, Germany, 2000.
´
2 (a) M. R. Gagne, L. Brard, V. P. Conticello, M. A. Giardello, C. L. Stern and
T. J. Marks, Organometallics, 1992, 11, 2003; (b) M. A. Giardello, V. P.
Conticello, L. Brard, M. Sabat, A. L. Rheingold, C. L. Stern and T. J. Marks,
J. Am. Chem. Soc., 1994, 116, 10212; (c) K. Manna, M. L. Kruse and
A. D. Sadow, ACS Catal., 2011, 1, 1637; (d) M. R. Gagne, C. L. Stern and
T. J. Marks, J. Am. Chem. Soc., 1992, 114, 275.
Scheme 4 Proposed catalytic cycle for intramolecular hydroamination.
3 (a) P. D. Knight, I. Munslow, P. N. O’Shaughnessy and P. Scott, Chem.
Commun., 2004, 894; (b) M. C. Wood, D. C. Leitch, C. S. Yeung, J. A. Kozak
and L. L. Schafer, Angew. Chem., Int. Ed., 2007, 46, 354; (c) A. L. Gott,
A. J. Clarke, G. J. Clarkson and P. Scott, Chem. Commun., 2008, 1422;
(d) K. Manna, S. Xu and A. D. Sadow, Angew. Chem., Int. Ed., 2011,
50, 1865; (e) G. Zi, X. Liu, L. Xiang and H. Song, Organometallics, 2009,
28, 1127; ( f ) K. Manna, W. C. Everett, G. Schoendorff, A. Ellern,
T. L. Windus and A. D. Sadow, J. Am. Chem. Soc., 2013, 135, 7235;
(g) M. C. Hansen, C. A. Heusser, T. C. Narayan, K. E. Fong, N. Hara,
A. W. Kohn, A. R. Venning, A. L. Rheingold and A. R. Johnson, Organo-
metallics, 2011, 30, 4616; (h) J. M. Hoover, J. R. Petersen, J. H. Pikul and
A. R. Johnson, Organometallics, 2004, 23, 4614.
the tethered bis(ureate)zirconium system.18 The parameters obtained
in the current study show a highly organized transition state.
Though 9 displayed a similar catalytic activity to that of 8 and 5b,
it was not clear whether a dinuclear species was involved in
the turnover-limiting step of the catalytic cycle as the first-order
dependence on precatalyst concentration was observed. Accordingly,
experiments on the non-linear effect were carried out. A strict linear
relationship between the ee values of 7A and those of precatalyst 5b
was observed (see Fig. S22 in the ESI†), as would be expected for the
exclusively monomeric mechanism. In addition, the 1H NMR spec-
trum showed that 9 dissociated into the monomeric form
[ONO]Zr(NHBut)2 in the presence of excess t-BuNH2 (see Schemes
S1 and S2 in ESI†). These results suggest that the reaction may
proceed via a mononuclear intermediate.
In addition, the isotopic substitution significantly affects the
reaction’s enantioselectivity, where the % ee’s for deutero-
pyrrolidines are systematically and significantly higher than
the values for the corresponding proteo-pyrrolidines (see Table S7
in ESI†). Such effects show that an N–H (or N–D) bond is involved
in the stereochemistry-determining step, supporting a concerted
C–H/C–N bond forming mechanism.3d
´
4 (a) P. Horrillo-Martınez and K. C. Hultzsch, Tetrahedron Lett., 2009,
50, 2054; (b) J. S. Wixey and B. D. Ward, Chem. Commun., 2011,
47, 5449; (c) X. Zhang, T. J. Emge and K. C. Hultzsch, Angew. Chem.,
Int. Ed., 2012, 51, 394.
5 (a) P. H. Martinez, K. C. Hultzsch and F. Hampel, Chem. Commun., 2006,
2221; (b) T. Ogata, A. Ujihara, S. Tsuchida, T. Shimizu, A. Kaneshige and
K. Tomioka, Tetrahedron Lett., 2007, 48, 6648; (c) J. Deschamp, J. Collin,
J. Hannedouche and E. Schulz, Eur. J. Org. Chem., 2011, 3329.
6 (a) X. Shen and S. L. Buchwald, Angew. Chem., Int. Ed., 2010, 49, 564;
(b) B. W. Turnpenny, K. L. Hyman and S. R. Chemler, Organometallics,
2012, 31, 7819; (c) Z. Zhang and R. A. Widenhoefer, Angew. Chem., Int. Ed.,
2007, 46, 283; (d) Z. Zhang, S. D. Lee and R. A. Widenhoefer, J. Am. Chem.
Soc., 2009, 131, 5373; (e) G. L. Hamilton, E. J. Kang, M. Mba and
F. D. Toste, Science, 2007, 317, 496.
7 (a) S. Hong, S. Tian, M. V. Metz and T. J. Marks, J. Am. Chem. Soc., 2003,
125, 14768; (b) X. Yu and T. J. Marks, Organometallics, 2007, 26, 365.
8 P. N. O’Shaughnessy, P. D. Knight, C. Morton, K. M. Gillespie and
P. Scott, Chem. Commun., 2003, 1770.
9 (a) J. Collin, J.-C. Daran, E. Schulz and A. Trifonov, Chem. Commun.,
2003, 3048; (b) J. Hannedouche, I. Aillaud, J. Collin, E. Schulz and
A. Trifonov, Chem. Commun., 2008, 3552; (c) I. Aillaud, K. Wright, J. Collin,
E. Schulz and J. P. Mazaleyrat, Tetrahedron: Asymmetry, 2008, 19, 82;
(d) Y. Chapurina, J. Hannedouche, J. Collin, R. Guillot, E. Schulz and
A. Trifonov, Chem. Commun., 2010, 46, 6918; (e) Y. Chapurina, H. Ibrahim,
R. Guillot, E. Kolodziej, J. Collin, A. Trifonov, E. Schulz and
J. Hannedouche, J. Org. Chem., 2011, 76, 10163.
10 (a) D. V. Gribkov, K. C. Hultzsch and F. Hampel, Chem. – Eur. J.,
2003, 9, 4796; (b) D. V. Gribkov, K. C. Hultzsch and F. Hampel, J. Am.
Chem. Soc., 2006, 128, 3748; (c) A. L. Reznichenko, H. N. Nguyen and
K. C. Hultzsch, Angew. Chem., Int. Ed., 2010, 49, 8984.
11 (a) J. Y. Kim and T. Livinghouse, Org. Lett., 2005, 7, 1737; (b) N. Meyer,
A. Zulys and P. W. Roesky, Organometallics, 2006, 25, 4179; (c) P. Benndorf,
J. Jenter, L. Zielke and P. W. Roesky, Chem. Commun., 2011, 47, 2574.
12 (a) L. Xiang, Q. Wang, H. Song and G. Zi, Organometallics, 2007, 26, 5323;
(b) G. Zi, L. Xiang and H. Song, Organometallics, 2008, 27, 1242.
13 N. D. Shapiro, V. Rauniyar, G. L. Hamilton, J. Wu and F. D. Toste,
Nature, 2011, 470, 245.
14 (a) K. Mikami and M. Lautens, New Frontiers in Asymmetric Catalysis,
J. Wiley and Sons, Inc., Hoboken, NJ, 2007; (b) B. List, Asymmetric
Organocatalysis, Springer, New York, 2010.
On the basis of aforementioned experimental data, a plausible
catalytic mechanism is proposed in Scheme 4. Initial aminolysis of the
precatalyst 5b by excess substrates liberates toluene to give a mono-
meric species I. The third substrate binds reversibly to the Zr atom to
give the species II. Intramolecular hydroamination takes place via
irreversible C–H and C–N bond formation through a highly ordered
transition state. This is supported by a very large and negative value of
DSa (À53.4(9) cal KÀ1 molÀ1) as well as a large KIE value of 5.2. The
dissociation of neutral pyrrolidine regenerates the active catalyst 1 to
complete the catalytic cycle. Such a mechanism is similar to those
reported in the literature.3d,18
In summary, this work describes our journey of exploring new
chiral zirconium catalysts for asymmetric hydroamination/cyclization.
Through systematic studies, we have developed a class of new pincer-
like [OÀNOÀ]Zr systems that can efficiently catalyze the hydroamination
of primary aminoalkenes with up to 94% ee and Z95% conversion.
The catalyst structure–enantioselectivity relationships have also been
addressed, which may shed some light on the ligand design of new
catalyst systems. A mechanism has also been proposed to account for
all of the experimental observations, which involves a highly ordered
transition state and a concerted bond formation pathway.
15 X. Wang, Z. Chen, X.-L. Sun, Y. Tang and Z. Xie, Org. Lett., 2011, 13, 4758.
16 C. He, J. Ke, H. Xu and A. Lei, Angew. Chem., Int. Ed., 2013, 125, 1527.
17 L. E. N. Allan, G. J. Clarkson, D. J. Fox, A. L. Gott and P. Scott, J. Am.
Chem. Soc., 2010, 132, 15308.
18 D. C. Leitch, R. H. Platel and L. L. Schafer, J. Am. Chem. Soc., 2011,
133, 15453.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.