system back into the normal Marcus region with a lifetime
of 2.6 ms.
This work was supported by the MEC of Spain (projects
CTQ2008-0795/BQU and Consolider-Ingenio 2010C-07-
25200), the CAM (MADRISOLAR-2 project S2009/PPQ-1533),
EU (FUNMOLS FP7-212942-1) and the Deutsche
Forschungsgemeinschaft (SFB and Clusters of Excellence
Engineering of Advanced Materials). A. M. O. and A. G.
thank the CAM, and the MEC of Spain for a research grant
and a Ramon y Cajal contract, respectively. We also thank the
´
National Science Foundation (Grant No. DMR 0809129
to L.E.).
Fig. 3 Differential absorption spectra (visible) obtained upon nano-
second flash photolysis (355 nm, 150 nJ) of 1 in THF with a time delay
of 80 ns at room temperature. Inset—time–absorption profile of the
spectra at 460 nm, monitoring the charge recombination dynamics.
Notes and references
1 M. R. Wasielewski, J. Org. Chem., 2006, 71, 5051–5066.
2
(a) G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789–1791; (b) B. P. Rand, J. Xue, S. Uchida and
S. R. Forrest, J. Appl. Phys., 2005, 98, 124902; (c) J. Peet, A. J. Heeger
and G. C. Bazan, Acc. Chem. Res., 2009, 42, 1700–1708.
A. F. Collings and C. Critchley, Artificial Photosynthesis: From
Basic Biology to Industrial Application, Wiley-VCH, Weinheim,
Germany, 2005.
region (i.e., 800–1200 nm). Of particular importance is the close
resemblance of the visible and the near-infrared part with the
radiolytically and spectroelectrochemically generated spectrum
of the one-electron oxidized ZnP radical cation and the one-
3
12,14
electron reduced Sc N@C radical anion, respectively.
3 80
4
5
D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res., 2001, 34,
40–48.
Endofullerenes: A New Family of Carbon Clusters, ed. T. Akasaka
and S. Nagase, Kluwer, Dordrecht, The Netherlands, 2002.
Thus, our spectroscopic analyses corroborate that charge separa-
À
3
N@C80) –(ZnP) governs
ꢀ
ꢀ
+
tion leading to the formation of (Sc
the fast deactivation of the ZnP singlet excited state.
ꢀ
ꢀ
+
À
The (Sc
3
N@C80
)
–(ZnP)
radical ion pair states are
6 D. M. Guldi, L. Feng, S. G. Radhakrishnan, H. Nikawa, M. Yamada,
N. Mizorogi, T. Tsuchiya, T. Akasaka, S. Nagase, M. A. Herranz and
N. Martın, J. Am. Chem. Soc., 2010, 132, 9078–9086.
persistent on the femto, pico, and nanoseconds time-scales.
It is only on the microsecond time regime where they start to
decay—Fig. 3. Thus, to determine the charge-recombination
rates complementary nanosecond experiments, that is, excitation
with a 6 ns laser pulse were performed. The spectral signatures
of the one-electron oxidized ZnP radical cation and the one-
7
(a) J. R. Pinzo
A. J. Athans, S. S. Gayathri, D. M. Guldi, M. A
N. Martın, T. Torres and L. Echegoyen, Angew. Chem., Int. Ed.,
008, 47, 4173–4176; (b) J. R. Pinzon, D. C. Gasca,
´
n, M. E. Plonska-Brzezinska, C. M. Cardona,
´
. Herranz,
´
2
´
S. G. Radhakrishnan, G. Bottari, T. Torres, D. M. Guldi and
L. Echegoyen, J. Am. Chem. Soc., 2009, 131, 7727–7734.
electron reduced Sc N@C
3
radical anion—as detected
80
8 (a) Z. Ge, J. C. Duchamp, T. Cai, H. W. Gibson and H. C. Dorn,
J. Am. Chem. Soc., 2005, 127, 16292–16298; (b) S. Stevenson,
K. Harich, H. Yu, R. R. Stephen, D. Heaps, C. Coumbe and
J. P. Phillips, J. Am. Chem. Soc., 2006, 128, 8829–8835; (c) B. Elliott,
L. Yu and L. Echegoyen, J. Am. Chem. Soc., 2005, 127, 10885–10888.
9 X. Liu, J. Liu, K. Jin, X. Yang, Q. Peng and L. Sun, Tetrahedron,
immediately after the laser pulse—decay synchronously and
give rise to kinetics that obey an unimolecular rate law. From
˚
the latter analyses lifetimes of 1.0 ms for 1 (RCC = 32.74 A)
and 1.2 ms for 2 (RCC = 45.94 A) were determined in THF in a
strictly oxygen free environment. Addition of molecular oxygen
˚
2
005, 61, 5655–5662.
1
1
0 F. D’Souza and O. Ito, Chem. Commun., 2009, 4913–4928.
1 (a) A. M. Brun, A. Harriman, V. Heitz and J. P. Sauvage, J. Am.
Chem. Soc., 1991, 113, 8657 and references therein; (b) J. Rodriguez,
C. Kirmaier and D. Holten, J. Am. Chem. Soc., 1989, 111, 6500.
to THF solutions resulted in shorter lifetimes with values of
0
.15 ms. From the latter we infer an activation-controlled
ꢀ ꢀ
+
À
80
interaction of molecular oxygen with (Sc N@C ) –(ZnP)
3
ꢀ
via charge transfer to generate O2 as the mechanism. The
12 J. R. Pinzo
´
n, C. M. Cardona, M. A. Herranz, M. E. Plonska-
guez-
À
16
Brzezinska, A. Palkar, A. J. Athans, N. Martin, A. Rodrı
´
lifetimes measured in benzonitrile—3.2 ms for 1 and 2.6 ms for
Fortea, J. M. Poblet, G. Bottari, T. Torres, S. G. Radhakrishnan,
D. M. Guldi and L. Echegoyen, Chem.–Eur. J., 2009, 15, 864–877.
3 C. M. Cardona, B. Elliott and L. Echegoyen, J. Am. Chem. Soc.,
2
—are interesting. Owing to the short donor–acceptor separation
and the cathodically shifted reduction of Sc N@C80 relative to
charge recombination in 1 is evidently pushed into the
1
1
3
2
006, 128, 6480–6485.
7b,8c
60
C ,
4 (a) K. Li, D. I. Schuster, D. M. Guldi, M. A. Herranz and
L. Echegoyen, J. Am. Chem.Soc., 2004, 126, 3388–3389;
17
inverted region of the Marcus parabola. In other words,
Sc N@C80 like C60 features small reorganization energies during
(
b) J.-C. Chambron, A. Harriman, V. Heitz and J. P. Sauvage,
J. Am. Chem. Soc., 1993, 115, 6109.
3
18
charge transfer reactions. In 2 the larger donor–acceptor
˚
separation of nearly 46 A seems to dominate any of the
1
5 D. M. Guldi and M. Prato, Acc. Chem. Res., 2000, 33, 695–703.
6 Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata,
Y. Goda, T. Masumizu and T. Nagano, J. Am. Chem. Soc., 2003,
1
aforementioned effects and brings the charge recombination
process into the normal region of the Marcus parabola.
In summary, we have shown that electron transfer reactions
between ZnP, as an electron donor, and Sc N@C , as an
1
25, 12803–12809.
7 (a) R. A. Marcus, J. Chem. Phys., 1956, 24, 966–978;
b) R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985,
1
(
3
80
811, 265; (c) R. A. Marcus, Angew. Chem., Int. Ed. Engl., 1993, 32,
1111–1121.
8 (a) H. Imahori, K. Hagiwara, T. Akiyama, M. Aoki, S. Taniguchi,
T. Okada, M. Shirakawa and Y. Sakata, Chem. Phys. Lett., 1996,
263, 545–550; (b) D. M. Guldi and A. D. Asmus, J. Am. Chem.
Soc., 1997, 119, 5744–5745.
electron acceptor, are possible over center-to-center distances
˚
of up to 45 A. Moreover, we have shown that changing the
1
solvent diminishes the distance effects and pushes the charge
recombination reaction of the long range electron transfer
2
272 Chem. Commun., 2011, 47, 2270–2272
This journal is c The Royal Society of Chemistry 2011