Paper
RSC Advances
aer these relatively large anions signing into the MIL-101,
there is still enough space to enter the reactants and get out
of the product. The POMs insertion into porous MIL-101 solid
was investigated using several methods: XRPD, FT-IR, SEM-
8 R. Villanneau, A. Marzouk, Y. Wang, A. B. Djamaa, G. Laugel,
A. Proust and F. Launay, Inorg. Chem., 2013, 52, 2958–2965.
9 X. Duan, Y. Liu, Q. Zhao, X. Wang and S. Li, RSC Adv., 2013, 3,
13748–13755.
EDX, ICP, TGA and N2 adsorption. Catalysts have a useful life 10 M. Kooti and M. Afshari, Mater. Res. Bull., 2012, 47, 3473–
and as a result, with time, their activities and their effect on the 3478.
reaction are reduced. This means that there are active points on 11 M. Afshari, M. Gorjizadeh and G. Afshar, Orient. J. Chem.,
the catalyst, which change over time due to different reasons. So 2014, 29, 1675–1681.
today, the ability to recover and recycle catalyst from the envi- 12 R. Tan, C. Liu, N. Feng, J. Xiao, W. Zheng, A. Zheng and
ronment is very important and signicant. In synthesized D. Yin, Microporous Mesoporous Mater., 2012, 158, 77–87.
composites, these active sites include polyoxometalates that are 13 E. Raee and S. Eavani, Green Chem., 2011, 13, 2116–2122.
stable in the reaction media and do not suffer from it. The 14 M. Rahimizadeh, G. Rajabzadeh, S.-M. Khatami, H. Eshghi
proposed mechanism for suldes oxidation over poly-
oxometalates involves formation of peroxo-tungstate species (an 15 J. Han, D. Wang, Y. Du, S. Xi, Z. Chen, S. Yin, T. Zhou and
electrophilic intermediate) by the interaction of hydrogen R. Xu, Appl. Catal., A, 2016, 521, 83–89.
peroxide with the polyoxometalate anions which this trans- 16 S. Kaskel, The chemistry of metal–organic frameworks:
and A. Shiri, J. Mol. Catal. A: Chem., 2010, 323, 59–64.
formation can oxidize the suldes into sulfones. Therefore, in
synthesis, characterization, and applications, John Wiley &
composites containing polyoxometalates, these are mainly
Sons, Germany, 2016.
catalytically active species that act as a catalyst. The best results 17 V. V. e. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko
were obtained by organic–inorganic framework incorporating and C. Lamberti, Russ. Chem. Rev., 2016, 85, 280.
of [(HOSnIVOH)3(PW9O34)2]12ꢀ and [(OCeIVO)3(PW9O34)2]12ꢀ 18 C.-D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc.,
among different sandwich polyoxometalates. The results of the 2005, 127, 8940–8941.
BET and TGA analyses show that P2W18Sn3@MIL-101 and P2- 19 S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D. N. Dybtsev and
W18Ce3@MIL-101 catalysts have lower specic surface area than K. Kim, Chem. Commun., 2012, 48, 7447–7449.
MIL-101, while they show signicant higher thermal stability. 20 S. Abednatanzi, A. Abbasi and M. Masteri-Farahani, J. Mol.
The advantages of this catalytic synthesis method it can be Catal. A: Chem., 2015, 399, 10–17.
pointed out to low cost and availability of raw materials, easy 21 K. M. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran and W. Lin,
synthesis and chemical and thermal stability.
J. Am. Chem. Soc., 2009, 131, 14261–14263.
22 Y.-F. Huang, M. Liu, Y.-Q. Wang, Y. Li, J.-M. Zhang and
S.-H. Huo, RSC Adv., 2016, 6, 15362–15369.
23 D. Y. Hong, Y. K. Hwang, C. Serre, G. Ferey and J. S. Chang,
Adv. Funct. Mater., 2009, 19, 1537–1552.
Conflicts of interest
The authors declare that they have no competing interests.
´
24 S. H. Jhung, J. H. Lee, J. W. Yoon, C. Serre, G. Ferey and
J. S. Chang, Adv. Mater., 2007, 19, 121–124.
25 S. Biswas, S. Couck, M. Grzywa, J. F. Denayer, D. Volkmer
and P. Van Der Voort, Eur. J. Inorg. Chem., 2012, 2012,
2481–2486.
Acknowledgements
The authors would like to thank the University of Kurdistan
Research Council for their support of this work.
´
26 G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange,
´
J. Dutour, S. Surble and I. Margiolaki, Science, 2005, 309,
2040–2042.
References
27 L. Bromberg and T. A. Hatton, ACS Appl. Mater. Interfaces,
2011, 3, 4756–4764.
28 L. Bromberg, Y. Diao, H. Wu, S. A. Speakman and
T. A. Hatton, Chem. Mater., 2012, 24, 1664–1675.
1 S. Zhao, Y. Chen and Y.-F. Song, Appl. Catal., A, 2014, 475,
140–146.
2 K. Mijares, Novel hybrid materials: Functionalized
polyoxometalates as potential metalloligands, Kansas State 29 A. K. Babahydari, R. Fareghi-Alamdari, S. M. Hafshejani,
University, Germany, 2008.
H. A. Rudbari and M. R. Farsani, J. Iran. Chem. Soc., 2016,
13, 1463–1470.
3 A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh
and G. Izzet, Chem. Soc. Rev., 2012, 41, 7605–7622.
4 C. L. Marchenaa, S. Gomeza, C. Sauxa, L. B. Pierellaa and
L. R. Pizziob, Quim. Nova, 2015, 38, 518–525.
˜
30 D. Juliao, A. C. Gomes, M. Pillinger, L. Cunha-Silva, B. de
Castro, I. S. Gonçalves and S. S. Balula, Fuel Process.
Technol., 2015, 131, 78–86.
5 R.
Ghanbaripour,
I.
Mohammadpoor-Baltork, 31 H. Haddadi, S. M. Hafshejani and M. R. Farsani, Catal. Lett.,
M. Moghadam, A. R. Khosropour, S. Tangestaninejad and
V. Mirkhani, Polyhedron, 2012, 31, 721–728.
2015, 145, 1984–1990.
32 L. Bahrami, R. Khoshnavazi and A. Rostami, J. Coord. Chem.,
6 X. Zheng, L. Zhang, J. Li, S. Luo and J.-P. Cheng, Chem.
Commun., 2011, 47, 12325–12327.
2015, 68, 4143–4158.
33 F. Xin and M. T. Pope, J. Am. Chem. Soc., 1996, 118, 7731–
7 Y. Guo, C. Hu, C. Jiang, Y. Yang, S. Jiang, X. Li and E. Wang, J.
Catal., 2003, 217, 141–151.
7736.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 28249–28260 | 28259