3
experiments show that Cu(OAc)2 is essential for the reaction and
AcOH is as an additive to inhibit side reaction and improve the
yield. Moreover, we investigated the role of O2 in the reaction
system (Scheme 3. Eq.3). The results indicate that O2 is the
significant oxidant in the reaction.
Scheme 2. Control experiments.
oxidation and reduction to produce target product 3aa with
elimination of Cu(l), which undergoes O2–assisted regeneration
to Cu(ll) that re-enters the reaction system.
On the basis of results above and previous literature reports,[9]
a plausible reaction mechanism for copper-catalyzed aerobic
oxidative coupling of α-carbonyl aldehydes with terminal alkynes
was described in Scheme 3. Initially, there is an equilibrium
between 1a and its monohydrate 1a’ in the system. Then,
phenylacetylene 2a reacts with Cu(OAc)2 to provide alkynyl
copper A, which attacks 1a resulting in the formation of the
intermediate B. Eventually, the intermediate B undergoes self-
3. Conclusion
In conclusion, we established a protocol for copper-catalyzed
aerobic oxidative coupling of α-carbonyl aldehydes with terminal
alkynes toward ynediones under mild conditions. These
transformations afforded various ynediones in high yields with a
broad substrate scope under an easy reaction system, and a
Table 2. Substrates scopea
2a
Ph
OAc
O
Ph
Cu
(ll)
Cu(OAc)2
O2
O
R'
O
O
Cu(OAc)2, AcOH
Ph
H2O
Ph
O
H2O
A
H
2O
+
R'
AcOH
R
R
Toluene,80o
O2
C
1a
O
3
1
2
AcOH
Cu(OAc)
O
O
Ph
O
O
O
O
OH
O
Ph
Ph
H
O
O
O
O
OH
1a'
H
3C
O
2N
H
3CO
OAc
Cu(II)
Ph
O
3da 67%
O
3ca 90%
3aa 92%
61%b
3ba 94%
B
3aa
CH3
O
O
O
O
Scheme 3. Plausible reaction mechanism.
Cl
O
O
O
3fa 85%
O
3ga 74%
F
3C
Br
3ab 93%
3ea 72%
plausible mechanism was presented based on some control
experiments. Further investigations of their applications are
underway in our laboratory.
CH3
OCH3
F
O
O
O
O
O
O
O
O
References and notes
3af 42%
3ac 94%
3ad 91%
3ae 82%
Cl
Br
1.
(a) Wu, J. C.; Song, R. J.; Wang, Z. Q.; Huang, X. C.; Xie, Y. X.;
Li, J. H. Angew. Chem. Int. Ed. 2012, 51, 3453-3457 ; (b) Tang, R.
Y.; Guo, X. K.; Xiang, J. N.; Li, J. H. J. Org. Chem. 2013, 78,
11163-11171; (c) Gers, C. F.; Nordmann, J.; Kumru, C.; Frank,
W.; Muller, T. J. J. J. Org. Chem. 2014, 79, 3296-3310.; (d)
Mupparapu, N.; Battini, N.; Battula, S.; Khan, S.; Vishwakarma, R.
A.; Ahmed, Q. N. Chem. Eur. J. 2015, 21, 2954-2960; (e) Yang, J.
M.; Cai, Z. J.; Wang, Q. D.; Fang, D.; Ji, S. J. Tetrahedron 2015,
71, 7010-7015; (f) Zhang, Z.; Dai, Z.; Jiang, X. As. J. Org. Chem.
2015, 4, 1370-1374; (g) Wu, C. L.; Zhao, F.; Shu, S. J.; Wang, J.;
Liu, H. RSC Adv. 2015, 5, 90396-90399; (h) Yan, J. W.; He, G. J.;
Yan, F. L.; Zhang, J. X.; Zhang, G. S. Rsc Adv. 2016, 6, 44029-
44033.
(a) Boersch, C.; Merkul, E.; Mueller, T. J. J. Angew. Chem. Int.
Edi. 2011, 50, 10448-10452; (b) Merkul, E.; Dohe, J.; Gers, C.;
Rominger, F.; Muller, T. J. J. Angew. Chem. Int Ed 2011, 50,
2966-2969; (c) Gers, C. F.; Nordmann, J.; Kumru, C.; Frank, W.;
Mueller, T. J. J. J.Org. Chem. 2014, 79, 3296-3310.
(a) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. Org. Lett.
2006, 8, 3445-3448; (b) Mukherjee, A. K.; Margaretha, P.; Agosta,
W. C. J. Org. Chem. 1996, 61, 3388; (c) Mukherjee, A. K.; Agosta,
W. C. J. Chem. Soc. Chem. Commun.,1994, 1821.
(a) Kashiwabara, T.; Tanaka, M. J. Org. Chem. 2009, 74, 3958-
3961; (b) Katritzky, A. R.; Wang, Z. Q.; Lang, H. Y.; Feng, D. M.
J. Org. Chem. 1997, 62, 4125-4130; (c) Cariou, M.; Simonet, J.
Chem. Soc. Chem. Comm. 1990, 445-446; (d) Ahmad, S.; Iqbal, J.
J. Chem. Soc. Chem. Comm. 1987, 692-693; (e) Leyendecker, J.;
Niewçhner, U.; Steglich, W. Tetrahedron Lett.,1983, 24, 2375 –
2378.
Stephens, R. D.; Castro, C. E. J. Org. Chem.,1963, 28, 3313.
Guo, M. J.; Li, D.; Zhang, Z. G. J. Org. Chem. 2003, 68, 10172-
10174.
O
O
O
O
CH3
CH3
3
5
O
O
O
O
3ai 86%
3aj 89%
3ah 55%
3ag 54%
O
OTBS
O
O
O
OTBDPS
O
O
O
O
3an 79%
3al 86%
3am 84%
3ak 91%
S
S
O
O
O
O
2.
3ao 91%
3ap 88%
a
Reaction conditions: 1 (0.2 mmol), 2 (4 equiv.), Cu(OAc)2 (10
mol%) and AcOH (20 mol%) dissolved in solvent (4 mL) and stirred
at 80 ℃ for 4 h in a sealed tube equipped with an O2 balloon;b 10
mmol of 1a.
3.
4.
O
O
Optimized conditions
O
(a)
H2O
+
without Cu(OAc)2
0%
O
3aa
2a
1a
O
O
O
5.
6.
O
Optimized conditions
(b)
(c)
H2O
+
43%
without AcOH
O
O
1a
2a
3aa
3aa
7.
8.
Zhang, Z.; Jiang, X. Org. Lett. 2014, 16, 4400-4403.
(a) Glaser; Dtsch, C. Ber. Chem. Ges.,1869, 2, 422; (b) Eglinton,
G.; Galbraith, A. R.; J. Chem. Soc.,1959, 889; (c) Hay, A. S. J.
Org. Chem.,1962, 27, 3320; (d) Bohlmann, F.; Schönowsky, H.;
Inhoffen, E. G.; Grau Chem. Ber., 1964, 97, 794.
(a) S. Lam, P. Y.; Vincent, G.;. Bonne, D; Clark, C. G.
Tetrahedron Lett., 2003, 44, 4927; (b) Lam, P. Y. S.; Deudon, S.;
O
Optimized conditions
O
H2O
+
Air
N2
O2
1a
2a
9.
trace
34%
92%