10.1002/chem.202101440
Chemistry - A European Journal
RESEARCH ARTICLE
[4]
[5]
a) S. L. Schreiber, Science 2000, 287, 1964-1969; b) W. R. J. D.
Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun. 2010, 1, 1-13;
c) C. J. Gerry, S. L. Schreiber, Curr. Opin. Chem. Biol. 2020, 56, 1-9.
a) S. Wetzel, R. S. Bon, K. Kumar, H. Waldmann, Angew. Chem. Int.
Ed. 2011, 50, 10800-10826; Angew. Chem. 2011, 123, 10990-11018;
b) H. van Hattum, H. Waldmann, J. Am. Chem. Soc. 2014, 136, 11853–
11859.
5
21e
16.9 ± 4.3
25.7 ± 0.4
> 30
3.9 ± 1.2
4.8 ± 0.1
11.8 ± 1.6
17.8 ± 1.7
12.5 ± 2.7
18.9 ± 6.0
11.7 ± 4.2
> 30
11.6 ± 0.9
12.1 ± 0.5
8.3 ± 3.3
> 18
6
21f
7
21g
8
21h
> 30
[6]
[7]
J. Kim, J. Jung, J. Koo, W. Cho, W. S. Lee, C. Kim, W. Park, S. B. Park,
Nat. Commun. 2016, 7, 13196.
[b]
[b]
[b]
9
YC-1
T-705
-
-
2.9 ± 1.3
-
P. Y. Ng, Y. Tang, W. M. Knosp, H. S. Stadler, J. T. Shaw, Angew.
Chem. Int. Ed. 2007, 46, 5352-5355; Angew. Chem. 2007, 119, 5448-
5451.
[b]
[b]
[b]
10
-
-
-
37.7
[a] Indicated values are mean ± SD of single experiment conducted
in triplicate. [b] Not determined.
[8]
[9]
G. Karageorgis, D. J. Foley, L. Laraia, H. Waldmann, Nat. Chem. 2020,
12, 227-235.
D. J. Foley, S. Zinken, D. Corkery, L. Laraia, A. Pahl, Y.-W. Wu, H.
Waldmann, Angew, Chem, Int, Ed. 2020, 59, 12470-12476; Angew.
Chem. 2020, 132, 12570-12576.
Conclusion
[10] F. M. Tajabadi, R. H. Pouwer, M. Liu, Y. Dashti, M. R. Campitelli, M.
Murtaza, G. D. Mellick, S. A. Wood, I. D. Jenkins, R. J. Quinn, J. Med.
Chem. 2018, 61, 6609−6628.
We
have
developed
a
novel
3D-shaped
diazatricyclododecene scaffold featuring a constrained bridging
tricyclic core. Synthetic studies on the gold(I)-catalyzed
cyclization of monoaza substrate 12 revealed that the electron-
donating group on the pendant alkyne is the key to the formation
of 6-endo-dig cyclized product 7 with complete regioselectivity.
The established synthetic strategy allowed the generation of the
diazatricyclododecne scaffold 8a, and the stepwise assembly of
the three substituents resulted in the generation of diversely
functionalized compounds 21a-u. Biological assays of designed
mimics of helix-3 of HIF-1α and the α-helix 16 of rabies virus
nucleoprotein indicated that some helix-mimetic compounds of
the hydrophobic ZZxxZ and ZxxZZ sequences (Z = Leu or Phe)
inhibited HIF transcriptional activity and/or anti-rabies viral
activity, revealing that our designed diazatricyclododecene 3D-
scaffold 8a has potential to be a versatile peptide mimic skeleton.
We believe that peptide mimicry based on rigid 3D scaffolds can
provide a new perspective for generating bioactive compounds.
Further development of novel 3D scaffolds and bioactive
compounds based on these scaffolds is currently being
conducted in our laboratory.
[11] a) A. J. Souers, J. D. Leverson, E. R. Boghaert, S. L. Ackler, N. D.
Catron, J. Chen, B. D. Dayton, H. Ding, S. H. Enschede, W. J.
Fairbrother, D. C. S. Huang, S. G. Hymowitz, S. Jin, S. L. Khaw, P. J.
Kovar, L. T. Lam, J. Lee, H. L. Maecker, K. C. Marsh, K. D. Mason, M.
J. Mitten, P. M. Nimmer, A. Oleksijew, C. H. Park, C.-M. Park, D. C.
Phillips, A. W. Roberts, D. Sampath, J. F. Seymour, M. L. Smith, G. M.
Sullivan, S. K. Tahir, C. Tse, M. D. Wendt, Y. Xiao, J. C. Xue, H. Zhang,
R. A. Humerickhouse, S. H. Rosenberg, S. W. Elmore, Nat. Med. 2013,
19, 202−208; b) C. M. Croce, J. C. Reed, Cancer Res. 2016, 76,
5914−5920; c) H. Lu, Q. Zhou, J. He, Z. Jiang, C. Peng, R. Tong, J. Shi,
Signal Transduct. Target. Ther. 2020, 5, 213.
[12] a) A. M. Petros, J. Dinges, D. J. Augeri, S. A. Baumeister, D. A.
Betebenner, M. G. Bures, S. W. Elmore, P. J. Hajduk, M. K. Joseph, S.
K. Landis, D. G. Nettesheim, S. H. Rosenberg, W. Shen, S. Thomas,
X. Wang, I. Zanze, H. Zhang, S. W. Fesik, J. Med. Chem. 2006, 49,
656−663; b) C. Tse, A. R. Shoemaker, J. Adickes, M. G. Anderson, J.
Chen, S. Jin, E. F. Johnson, K. C. Marsh, M. J. Mitten, P. Nimmer, L.
Roberts, S. K. Tahir, Y. Xiao, X. Yang, H. Zhang, S. Fesik, S. H.
Rosenberg, S. W. Elmore, Cancer Res. 2008, 68, 3421−3428.
[13] a) M. Pelay-Gimeno, A. Glas, O. Koch, T. N. Grossmann, Angew.
Chem. Int. Ed. 2015, 54, 8896-8927; Angew. Chem. 2015, 127, 9022-
9054; b) C. Sheng, G. Dong, Z. Miao, W. Zhang, W. Wang. Chem. Soc.
Rev, 2015, 44, 8238-8259; c) L. Mabonga, A. P. Kappo, Int. J. Pept.
Res. Therapeut. 2020, 26, 225–241.
Acknowledgements
[14] W. P. Nolan, G. S. Ratcliffe, D. C. Rees, Tetrahedron Lett. 1992, 33,
6879-6882.
[15] B. P. Orner, J. T. Ernst, A. D. Hamilton, J. Am. Chem. Soc. 2001, 123,
5382-5383.
We thank Mr Yoshihisa Sei (Open Facility Center, Materials
Analysis Division Tokyo Institute of Technology) for his technical
support with X-ray crystallographic analysis.
[16] J.-M. Ahn, S.-Y. Han, Tetrahedron Lett. 2007, 48, 3543-3547.
[17] A. Volonterio, L. Moisan, J. Rebek, Org. Lett. 2007, 9, 3733-3736.
[18] J. H. Lee, Q. Zhang, S. Jo, S. C. Chai, M. Oh, W. Im, H. Lu, H.-S. Lim,
J. Am. Chem. Soc. 2011, 133, 676-679.
[19] P. Tošoská, P. S. Arora, Org. Lett. 2010, 12, 1588-1591.
[20] B. B. Lao, I. Grishagin, H. Mesallati, T. F. Brewer, B. Z. Olenyuk, P. S.
Arora. Proc. Natl. Acad. Sci. USA 2014, 111, 7531–7536.
[21] H. Ueda, A. Yoshimori, H. Nakamura, Bioorg. Med. Chem. 2018, 26,
3345-3351.
Conflict of interest
The authors declare no conflict of interest.
Keywords: 3D scaffold • chemical space • gold catalysis •
[22] V. D. Pont, R. K. Plemper, M. J. Schnell, Curr. Opin. Virol. 2019, 35, 1-
13.
peptidomimetic • pharmacophore fitting
[23] A. A. V. Albertini, A. K. Wernimont, T. Muziol, R. B. G. Ravelli, C. R.
Clapier, G. Schoehn, W. Weissenhorn, R. W. H. Ruigrok, Science,
2006, 313, 360-363.
[1]
S. R. Langdon, N. Brown, J. Blagg, J. Chem. Inf. Model. 2011, 51,
2174-2185.
[24] a) S. T. Staben, J. J. Kennedy-Smith, D. Huang, B. K. Corkey, R. L.
LaLonde, F. D. Toste, Angew. Chem. Int. Ed. 2006, 45, 5991-5994;
Angew. Chem. 2006, 118, 6137-6140; b) F. Barabé, G. Bétournay, G.
Bellavance, L. Barriault, Org. Lett. 2009, 11, 4236-4238; c) A. Carrër,
C. Péan, F. Perron-Sierra, O. Mirguet, V. Michelet, Adv. Synth. Catal.
2016, 358, 1540-1545.
[2]
[3]
D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443–4458.
a) S. Dandapani, L. A. Marcaurelle, Nat. Chem. Biol. 2010, 6, 861-863;
b) A. Barker, J. G. Kettle, T. Nowak, J. E. Pease, Drug Discov. Today
2013, 18, 298-304; c) M. R. Arkin, J. A. Wells, Nat Rev Drug Discov
2004, 3, 301–317.
6
This article is protected by copyright. All rights reserved.